Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 15(45): 9253-9260, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31657428

RESUMEN

Spatial control of wettability is key to many applications of microfluidic devices, ranging from double emulsion generation to localized cell adhesion. A number of techniques, often based on masking, have been developed to produce spatially-resolved wettability patterns at the surface of poly(dimethylsiloxane) (PDMS) elastomers. A major impediment they face is the natural hydrophobic recovery of PDMS: hydrophilized PDMS surfaces tend to return to hydrophobicity with time, mainly because of diffusion of low molecular weight silicone species to the surface. Instead of trying to avoid this phenomenon, we propose in this work to take advantage of hydrophobic recovery to modulate spatially the surface wettability of PDMS. Because temperature speeds up the rate of hydrophobic recovery, we show that space-resolved hydrophobic patterns can be produced by locally heating a plasma-hydrophilized PDMS surface with microresistors. Importantly, local wettability is quantified in microchannels using a fluorescent probe. This "thermo-patterning" technique provides a simple route to in situ wettability patterning in closed PDMS chips, without requiring further surface chemistry.

2.
Eur Phys J E Soft Matter ; 42(1): 6, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30659393

RESUMEN

While the acoustic properties of solid foams have been abundantly characterized, sound propagation in liquid foams remains poorly understood. Recent studies have investigated the transmission of ultrasound through three-dimensional polydisperse liquid foams (Pierre et al., 2013, 2014, 2017). However, further progress requires to characterize the acoustic response of better-controlled foam structures. In this work, we study experimentally the transmission of ultrasounds through a single layer of monodisperse bubbles generated by microfluidics techniques. In such a material, we show that the sound velocity is only sensitive to the gas phase. Nevertheless, the structure of the liquid network has to be taken into account through a transfer parameter analogous to the one in a layer of porous material. Finally, we observe that the attenuation cannot be explained by thermal dissipation alone, but is compatible with viscous dissipation in the gas pores of the monolayer.

3.
Langmuir ; 34(10): 3221-3227, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29498527

RESUMEN

Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text]. At first order, the environmental humidity seems to have almost no impact on most of the film thinning dynamics. However, we find that the film length at rupture increases continuously with [Formula: see text]. To rationalize our observations, we propose that film bursting occurs when the thinning due to evaporation becomes comparable to the thinning due to liquid drainage. This rupture criterion turns out to be in reasonable agreement with an estimation of the evaporation rate in our experiment.

4.
Soft Matter ; 12(24): 5276-84, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27198503

RESUMEN

In this paper, we investigate how the drainage and rupture of surfactant-stabilised bubbles floating at the surface of a liquid pool depend on the concentration of surface-active molecules in water. Drainage measurements at the apex of bubbles indicate that the flow profile is increasingly plug-like as the surfactant concentration is decreased from several times the critical micellar concentration (cmc) to just below the cmc. High-speed observations of bubble bursting reveal that the position at which a hole nucleates in the bubble cap also depends on the surfactant concentration. On average, the rupture is initiated close to the bubble foot for low concentrations (

5.
Soft Matter ; 11(14): 2758-70, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25697220

RESUMEN

The behavior of thin liquid films is known to be strongly affected by the presence of surfactants at the interfaces. The detailed mechanism by which the latter enhance film stability is still a matter of debate, in particular concerning the influence of surface elastic effects on the hydrodynamic boundary condition at the liquid/air interfaces. In the present work, "twin" hydrodynamic models neglecting surfactant transport to the interfaces are proposed to describe the coating of films onto a solid plate (Landau-Levich-Derjaguin configuration) as well as soap film pulling (Frankel configuration). Experimental data on the entrained film thickness in both configurations can be fitted very well using a single value of the surface elasticity, which is in good agreement with independent measurements by mean of surface expansion experiments in a Langmuir through. The analysis thus shows that soap films or dip coating experiments may be used to measure the surface elasticity of surfactant solutions in the insoluble limit, namely as long as the film generation dynamics is fast compared to the surfactant adsorption timescale.

6.
Soft Matter ; 10(16): 2899-906, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24668363

RESUMEN

What are the lifetime and maximum length of a soap film pulled at a velocity V out of a bath of soapy solution? This is the question we explore in this article by performing systematic film rupture experiments. We show that the lifetime and maximal length of the films are fairly reproducible and controlled only by hydrodynamics. For surfactants with high surface elastic modulus, we argue that the rupture is triggered by the expansion of a thinning zone at the top of the film. The length ltz of this zone expands with time at a velocity equal to V/2, which can be obtained by a balance between gravity and viscous forces. The film lifetime is then found to decrease with the pulling velocity V, which implies that the surface tension gradient along the film increases with V. This surface tension gradient is found to be surprisingly small. Finally, the lifetime of films stabilised by solutions with small surface elastic modulus turns out to be much shorter than the ones for films with rigid interfaces.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 012301, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400603

RESUMEN

We report on the fracturing of cohesive granular materials subjected to a flexural deformation. A thin layer of glass beads or of flour is deposited on an unstretchable membrane to which flexion is imposed. We observe the formation of a periodic fracturing pattern whose characteristics are discussed in comparison with results previously obtained for an in-plane stretching [Alarcon, Ramos, Vanel, Vittoz, Melo, and Géminard, Phys. Rev. Lett. 105, 208001 (2010)]. In particular, at a given relative humidity, the wavelength is observed to depend linearly on the layer thickness but to be independent of the grain size, although the smallest grains are clearly more cohesive.


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Adhesividad , Simulación por Computador , Módulo de Elasticidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA