Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(2): 384-397.e5, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32673565

RESUMEN

Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.


Asunto(s)
Citocinas/metabolismo , Interleucina-17/metabolismo , Células Th17/patología , Uveítis/patología , Adulto , Animales , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Interleucina-17/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células Th17/inmunología , Uveítis/inmunología , Adulto Joven
2.
Cell ; 154(2): 365-76, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870125

RESUMEN

Phagocytosis and degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is fundamental to vision. Autophagy is also responsible for bulk degradation of cellular components, but its role in POS degradation is not well understood. We report that the morning burst of RPE phagocytosis coincided with the enzymatic conversion of autophagy protein LC3 to its lipidated form. LC3 associated with single-membrane phagosomes containing engulfed POS in an Atg5-dependent manner that required Beclin1, but not the autophagy preinitiation complex. The importance of this process was verified in mice with Atg5-deficient RPE cells that showed evidence of disrupted lysosomal processing. These mice also exhibited decreased photoreceptor responses to light stimuli and decreased chromophore levels that were restored with exogenous retinoid supplementation. These results establish that the interplay of phagocytosis and autophagy within the RPE is required for both POS degradation and the maintenance of retinoid levels to support vision.


Asunto(s)
Autofagia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Visión Ocular , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Bovinos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fagocitosis , Fagosomas/metabolismo , Retinoides/metabolismo
3.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963628

RESUMEN

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , ARN Viral/análisis , Inflamación
4.
Exp Eye Res ; 239: 109749, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113956

RESUMEN

Pam3CSK4 activates Toll-like receptors 2 and 1 (TLR1/2), which recognize mainly molecules from gram-positive pathogens. The effect of Pam3CSK4 on various cytokine and chemokine expression in cultured human uveal melanocytes (UM) has not been studied systematically. The purpose of this study was to investigate the mechanistic expressions of seven cytokines and chemokines of interleukin- (IL-) 6, IL-10, MCP-1 (CCL-2), CXCL-1 (GRO-α), CXCL-8 (IL-8), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) in UM. These cytokines are reported to be increased in intraocular fluids or tissues of the patients with endophthalmitis and non-infectious uveitis, as well as in various experimental animal uveitic models in the literature. Flow cytometry was used to measure the effects of Pam3CSK4 on the expression of TLR1/2 in UM. ELISA and Real-time PCR analysis were used to estimate the ability of Pam3CSK4 to elevate these cytokines and chemokines levels in conditioned media and cell lysates of UM, respectively. Flow cytometry measured and compared the phosphorylated MAPK pathway and activated NF-κB signals pathway in UM, treated with and without Pam3CSK4. ELISA analysis tested the effect of various signal inhibitors (ERK1/2, JNK1/2, p38 and NF-κB) on Pam3CSK4-induced IL-6 levels in cultured UM. The role of TLR2 in Pam3CSK4-induced acute anterior uveitis in experimental mouse model was tested in TLR2 knockout (TLR2 KO) mice and their wild-type C57Bl/6 controls. Pam3CSK4 increased the expression of TLR1/2 proteins in cultured UM. Pam3CSK4 significantly elevated the IL-6, MCP-1, CXCL-1, CXCL-8 protein, and mRNA levels in cultured UM, but not IL-10, TNF-α, or IFN-γ. Pam3CSK4 activated NF-κB, ERK, JNK, and p38 expression. Pam3CSK4-induced expression of IL-6 was decreased by NF-κB, ERK, INK, and p38 inhibitors; especially the NF-κB inhibitor, which can completely block the IL-6 stimulation. Intravitreal injection of Pam3CSK4 induced acute anterior uveitis in C57Bl/6 mice, this effect was significantly reduced in TLR2 KO mice. TLR1/2 plays an important role against invading pathogens, especially gram-positive bacteria; but an excessive reaction to molecules from gram-positive bacteria may promote non-infectious uveitis. UM can produce IL-6, MCP-1, CXCL-1, and CXCL-8, and are one of the target cells of TNF-α and IFN-γ. TLR-2 inhibitors might have a beneficial effect in the treatment of certain types of uveitis and other ocular inflammatory-related diseases and warrant further investigation.


Asunto(s)
Uveítis Anterior , Uveítis , Humanos , Animales , Ratones , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 1/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Melanocitos/metabolismo , Quimiocinas/metabolismo , Uveítis/metabolismo , Uveítis Anterior/metabolismo
5.
Immunity ; 43(2): 343-53, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26287682

RESUMEN

Activated retina-specific T cells that have acquired the ability to break through the blood-retinal barrier are thought to be causally involved in autoimmune uveitis, a major cause of human blindness. It is unclear where these autoreactive T cells first become activated, given that their cognate antigens are sequestered within the immune-privileged eye. We demonstrate in a novel mouse model of spontaneous uveitis that activation of retina-specific T cells is dependent on gut commensal microbiota. Retina-specific T cell activation involved signaling through the autoreactive T cell receptor (TCR) in response to non-cognate antigen in the intestine and was independent of the endogenous retinal autoantigen. Our findings not only have implications for the etiology of human uveitis, but also raise the possibility that activation of autoreactive TCRs by commensal microbes might be a more common trigger of autoimmune diseases than is currently appreciated.


Asunto(s)
Intestinos/inmunología , Microbiota/inmunología , Retina/inmunología , Linfocitos T/inmunología , Uveítis/inmunología , Animales , Antígenos Bacterianos/administración & dosificación , Autoantígenos/inmunología , Autoinmunidad , Barrera Hematorretinal/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/inmunología , Proteínas del Ojo/metabolismo , Tolerancia Inmunológica , Intestinos/microbiología , Activación de Linfocitos , Ratones Endogámicos , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/inmunología , Proteínas de Unión al Retinol/metabolismo , Uveítis/microbiología
6.
Exp Eye Res ; 216: 108943, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074346

RESUMEN

Fibroblast-stimulating lipopeptide (FSL-1) can activate Toll-like receptor 2 and 6 (TLR2/6), which recognize relevant molecules from gram-positive pathogens, fungus, and mycoplasma, and elevates the expression of CXCL1 and CXCL2, neutrophil chemoattractants, in certain types of cells. This effect has not previously been reported in the uveal melanocytes (UM). This study was designed to test the hypothesis that FSL-1 can induce the expression and secretion of CXCL1 and CXCL2 via activation of TLR2/6 in cultured human UM and producing an acute non-infectious uveitis reaction in the mouse. Flow cytometry and fluorescent immunostaining were used to measure the effect of FSL-1 on the expression of TLR2/6 in UM. Real time PCR and ELISA analysis were used to assess the ability of FSL-1 to elevate CXCL1/CXCL2 levels in cell lysates and conditioned media of UM, respectively. Flow cytometry measured phosphorylated MAPK and activated NF-κB signals in UM, with and without FSL-1 treatment. ELISA analysis tested the impact of various signal inhibitors (NF-κB, p38 MAPK, JNK1/2 and ERK1/2) and TLR2/6 antagonists on FSL-1-induced CXCL1/CXCL2 levels in cultured UM. The effects of neutralizing antibodies to TLR2 on FSL-1-induced mouse uveitis were tested in an experimental animal model. FSL-1 induced the expression of TLR2/6 proteins in cultured UM. FSL-1 significantly elevated the CXCL1 and CXCL2 proteins and mRNA levels in cultured UM time- and dose-dependently. FSL-1 mainly activated NF-κB, JNK, and expression of TLR2. FSL-1-induced expression of CXCL1 and CXCL2 was blocked by NF-κB, JNK, ERK inhibitors and TLR2 antagonists. Intravitreal injection of FSL-1 induced acute non-infectious mouse uveitis, which was significantly reduced in severity by a TLR2 antagonist. These results suggest that UM may play a role in the immune reaction, which targets invading pathogens, especially gram-positive bacteria. On the other hand, an excessive reaction to molecules from gram-positive bacteria may promote an inflammatory state of non-infectious uveitis.


Asunto(s)
Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Diglicéridos/farmacología , Melanocitos/efectos de los fármacos , Oligopéptidos/farmacología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/agonistas , Úvea/citología , Animales , Anticuerpos Neutralizantes/farmacología , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inyecciones Intravítreas , Melanocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosforilación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Uveítis/inducido químicamente , Uveítis/metabolismo
7.
Adv Exp Med Biol ; 1256: 67-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847998

RESUMEN

Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.


Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular Húmeda , Inhibidores de la Angiogénesis/uso terapéutico , Lámina Basal de la Coroides , Humanos , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual
8.
PLoS Genet ; 14(8): e1007504, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157172

RESUMEN

We identified a homozygous missense alteration (c.75C>A, p.D25E) in CLCC1, encoding a presumptive intracellular chloride channel highly expressed in the retina, associated with autosomal recessive retinitis pigmentosa (arRP) in eight consanguineous families of Pakistani descent. The p.D25E alteration decreased CLCC1 channel function accompanied by accumulation of mutant protein in granules within the ER lumen, while siRNA knockdown of CLCC1 mRNA induced apoptosis in cultured ARPE-19 cells. TALEN KO in zebrafish was lethal 11 days post fertilization. The depressed electroretinogram (ERG) cone response and cone spectral sensitivity of 5 dpf KO zebrafish and reduced eye size, retinal thickness, and expression of rod and cone opsins could be rescued by injection of wild type CLCC1 mRNA. Clcc1+/- KO mice showed decreased ERGs and photoreceptor number. Together these results strongly suggest that intracellular chloride transport by CLCC1 is a critical process in maintaining retinal integrity, and CLCC1 is crucial for survival and function of retinal cells.


Asunto(s)
Canales de Cloruro/genética , Mutación Missense , Retinitis Pigmentosa/genética , Animales , Pueblo Asiatico/genética , Línea Celular , Canales de Cloruro/metabolismo , Citoplasma/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Células HEK293 , Homocigoto , Humanos , Ratones , Ratones Noqueados , Pakistán , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/diagnóstico , Pez Cebra/genética , Pez Cebra/metabolismo
9.
J Autoimmun ; 114: 102507, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32593472

RESUMEN

IFN-γ and IL-17A can each elicit ocular autoimmunity independently of the other. Since absence of IFN-γ or IL-17A individually failed to abolish pathology of experimental autoimmune uveitis (EAU), we examined EAU development in the absence of both these cytokines. Ifng-/-Il17a-/- mice were fully susceptible to EAU with a characteristic eosinophilic ocular infiltrate, as opposed to a mononuclear infiltrate in WT mice. Retinal pathology in double-deficient mice was ameliorated when eosinophils were genetically absent or their migration was blocked, supporting a pathogenic role for eosinophils in EAU in the concurrent absence of IFN-γ and IL-17A. In EAU-challenged Ifng-/-Il17a-/- mice, ocular infiltrates contained increased GM-CSF-producing CD4+ T cells, and supernatants of retinal antigen-stimulated splenocytes contained enhanced levels of GM-CSF that contributed to activation and migration of eosinophils in vitro. Systemic or local blockade of GM-CSF ameliorated EAU in Ifng-/-Il17a-/- mice, reduced eosinophil peroxidase levels in the eye and in the serum and decreased eosinophil infiltration to the eye. These results support the interpretation that, in the concurrent absence of IFN-γ and IL-17A, GM-CSF takes on a major role as an inflammatory effector cytokine and drives an eosinophil-dominant pathology. Our findings may impact therapeutic strategies aiming to target IFN-γ and IL-17A in autoimmune uveitis.


Asunto(s)
Autoinmunidad , Eosinofilia/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Retinitis/etiología , Retinitis/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Eosinófilos/inmunología , Eosinófilos/metabolismo , Eosinófilos/patología , Interferón gamma/genética , Interleucina-17/genética , Ratones , Ratones Noqueados , Retinitis/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
10.
Ophthalmology ; 127(7): 956-962, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32197914

RESUMEN

PURPOSE: To assess the diagnostic performance and generalizability of logistic regression in classifying primary vitreoretinal lymphoma (PVRL) versus uveitis from intraocular cytokine levels in a single-center retrospective cohort, comparing a logistic regression model and previously published Interleukin Score for Intraocular Lymphoma Diagnosis (ISOLD) scores against the interleukin 10 (IL-10)-to-interleukin 6 (IL-6) ratio. DESIGN: Retrospective cohort study. PARTICIPANTS: Patient histories, pathology reports, and intraocular cytokine levels from 2339 patient entries in the National Eye Institute Histopathology Core database. METHODS: Patient diagnoses of PVRL versus uveitis and associated aqueous or vitreous IL-6 and IL-10 levels were collected retrospectively. From these data, cytokine levels were compared between diagnoses with the Mann-Whitney U test. A logistic regression model was trained to classify PVRL versus uveitis from aqueous and vitreous IL-6 and IL-10 samples and compared with ISOLD scores and IL-10-to-IL-6 ratios. MAIN OUTCOME MEASURES: Area under the receiver operating characteristic curve (AUC) for each classifier and sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) at the optimal cutoff (maximal Youden index) for each classifier. RESULTS: Seventy-seven lymphoma patients (10 aqueous samples, 67 vitreous samples) and 84 uveitis patients (19 aqueous samples, 65 vitreous samples) treated between October 5, 1999, and September 16, 2015, were included. Interleukin 6 levels were higher and IL-10 levels were lower in uveitis patients compared with lymphoma patients (P < 0.01). For vitreous samples, the logistic regression model, ISOLD score, and IL-10-to-IL-6 ratio achieved AUCs of 98.3%, 97.7%, and 96.3%, respectively. Sensitivity, specificity, PPV, and NPV at the optimal cutoffs for each classifier were 94.2%, 96.9%, 97%, and 94% for the logistic regression model; 92.7%, 100%, 100%, and 92.9% for the ISOLD score; and 94.2%, 95.3%, 95.6%, and 93.9% for the IL-10-to-IL-6 ratio. All models achieved complete separation between uveitis and lymphoma in the aqueous data set. CONCLUSIONS: The accuracy of the logistic regression model and generalizability of the ISOLD score to an independent patient cohort suggest that intraocular cytokine analysis by logistic regression may be a promising adjunct to cytopathologic analysis, the gold standard, for the early diagnosis of primary vitreoretinal lymphoma. Further validation studies are merited.


Asunto(s)
Humor Acuoso/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Linfoma Intraocular/clasificación , Neoplasias de la Retina/clasificación , Uveítis/clasificación , Cuerpo Vítreo/patología , Biomarcadores de Tumor/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Linfoma Intraocular/diagnóstico , Linfoma Intraocular/metabolismo , Masculino , Persona de Mediana Edad , Curva ROC , Neoplasias de la Retina/diagnóstico , Neoplasias de la Retina/metabolismo , Estudios Retrospectivos , Uveítis/diagnóstico , Uveítis/metabolismo
11.
Immunity ; 35(6): 972-85, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22177921

RESUMEN

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and ß-catenin signaling axis, and accumulated ß-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Asunto(s)
Células Madre/metabolismo , Células Th17/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Supervivencia Celular/genética , Perfilación de la Expresión Génica , Interleucina-17/biosíntesis , Ratones , Ratones Transgénicos , Neoplasias/inmunología , Células Madre/citología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/citología , Células TH1/inmunología , Células Th17/citología , Células Th17/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(34): E7131-E7139, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28778995

RESUMEN

EGR1 is an early growth response zinc finger transcription factor with broad actions, including in differentiation, mitogenesis, tumor suppression, and neuronal plasticity. Here we demonstrate that Egr1-/- mice on the C57BL/6 background have normal eyelid development, but back-crossing to BALB/c background for four or five generations resulted in defective eyelid development by day E15.5, at which time EGR1 was expressed in eyelids of WT mice. Defective eyelid formation correlated with profound ocular anomalies evident by postnatal days 1-4, including severe cryptophthalmos, microphthalmia or anophthalmia, retinal dysplasia, keratitis, corneal neovascularization, cataracts, and calcification. The BALB/c albino phenotype-associated Tyrc tyrosinase mutation appeared to contribute to the phenotype, because crossing the independent Tyrc-2J allele to Egr1-/- C57BL/6 mice also produced ocular abnormalities, albeit less severe than those in Egr1-/- BALB/c mice. Thus EGR1, in a genetic background-dependent manner, plays a critical role in mammalian eyelid development and closure, with subsequent impact on ocular integrity.


Asunto(s)
Párpados/crecimiento & desarrollo , Ratones/genética , Ratones/metabolismo , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Párpados/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones/crecimiento & desarrollo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
13.
J Autoimmun ; 102: 65-76, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31080013

RESUMEN

IL-22 has opposing effects in different tissues, from pro-inflammatory (skin, joints) to protective (liver, intestine) but little is known about its effects on neuroinflammation. We examined the effect of IL-22 on retinal tissue by using the model of experimental autoimmune uveitis (EAU) in IL-22-/- mice, as well as by intraocular injections of recombinant IL-22 or anti-IL-22 antibodies in wild type animals. During EAU, IL-22 was produced in the eye by CD4+ eye-infiltrating T cells. EAU-challenged IL-22-/- mice, as well as WT mice treated systemically or intraocularly with anti-IL-22 antibodies during the expression phase of disease, developed exacerbated retinal damage. Furthermore, IL-22-/- mice were more susceptible than WT controls to glutamate-induced neurotoxicity, whereas local IL-22 supplementation was protective, suggesting direct or indirect neuroprotective effects. Mechanistic studies revealed that retinal glial Müller cells express IL-22rα1 in vivo, and in vitro IL-22 enhanced their ability to suppress proliferation of effector T cells. Finally, IL-22 injected into the eye concurrently with IL-1, inhibited the (IL-1-induced) expression of multiple proinflammatory and proapoptotic genes in retinal tissue. These findings suggest that IL-22 can function locally within the retina to reduce inflammatory damage and provide neuroprotection by affecting multiple molecular and cellular pathways.


Asunto(s)
Autoinmunidad , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Susceptibilidad a Enfermedades , Interleucinas/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Autoinmunidad/genética , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Células Ependimogliales/inmunología , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Interleucinas/genética , Interleucinas/farmacología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuroprotección/genética , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Uveítis/etiología , Uveítis/metabolismo , Uveítis/patología , Interleucina-22
14.
PLoS Med ; 15(11): e1002674, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30399150

RESUMEN

BACKGROUND: Electronic medical records provide large-scale real-world clinical data for use in developing clinical decision systems. However, sophisticated methodology and analytical skills are required to handle the large-scale datasets necessary for the optimisation of prediction accuracy. Myopia is a common cause of vision loss. Current approaches to control myopia progression are effective but have significant side effects. Therefore, identifying those at greatest risk who should undergo targeted therapy is of great clinical importance. The objective of this study was to apply big data and machine learning technology to develop an algorithm that can predict the onset of high myopia, at specific future time points, among Chinese school-aged children. METHODS AND FINDINGS: Real-world clinical refraction data were derived from electronic medical record systems in 8 ophthalmic centres from January 1, 2005, to December 30, 2015. The variables of age, spherical equivalent (SE), and annual progression rate were used to develop an algorithm to predict SE and onset of high myopia (SE ≤ -6.0 dioptres) up to 10 years in the future. Random forest machine learning was used for algorithm training and validation. Electronic medical records from the Zhongshan Ophthalmic Centre (a major tertiary ophthalmic centre in China) were used as the training set. Ten-fold cross-validation and out-of-bag (OOB) methods were applied for internal validation. The remaining 7 independent datasets were used for external validation. Two population-based datasets, which had no participant overlap with the ophthalmic-centre-based datasets, were used for multi-resource validation testing. The main outcomes and measures were the area under the curve (AUC) values for predicting the onset of high myopia over 10 years and the presence of high myopia at 18 years of age. In total, 687,063 multiple visit records (≥3 records) of 129,242 individuals in the ophthalmic-centre-based electronic medical record databases and 17,113 follow-up records of 3,215 participants in population-based cohorts were included in the analysis. Our algorithm accurately predicted the presence of high myopia in internal validation (the AUC ranged from 0.903 to 0.986 for 3 years, 0.875 to 0.901 for 5 years, and 0.852 to 0.888 for 8 years), external validation (the AUC ranged from 0.874 to 0.976 for 3 years, 0.847 to 0.921 for 5 years, and 0.802 to 0.886 for 8 years), and multi-resource testing (the AUC ranged from 0.752 to 0.869 for 4 years). With respect to the prediction of high myopia development by 18 years of age, as a surrogate of high myopia in adulthood, the algorithm provided clinically acceptable accuracy over 3 years (the AUC ranged from 0.940 to 0.985), 5 years (the AUC ranged from 0.856 to 0.901), and even 8 years (the AUC ranged from 0.801 to 0.837). Meanwhile, our algorithm achieved clinically acceptable prediction of the actual refraction values at future time points, which is supported by the regressive performance and calibration curves. Although the algorithm achieved balanced and robust performance, concerns about the compromised quality of real-world clinical data and over-fitting issues should be cautiously considered. CONCLUSIONS: To our knowledge, this study, for the first time, used large-scale data collected from electronic health records to demonstrate the contribution of big data and machine learning approaches to improved prediction of myopia prognosis in Chinese school-aged children. This work provides evidence for transforming clinical practice, health policy-making, and precise individualised interventions regarding the practical control of school-aged myopia.


Asunto(s)
Minería de Datos/métodos , Diagnóstico por Computador/métodos , Registros Electrónicos de Salud , Aprendizaje Automático , Miopía/diagnóstico , Refracción Ocular , Adolescente , Factores de Edad , Niño , China/epidemiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Miopía/epidemiología , Miopía/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
15.
Exp Eye Res ; 175: 181-191, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935949

RESUMEN

Matrix metalloproteinase (MMP)-8 is the most potent MMP for degrading collagen type-1 and plays an important role in inflammatory reactions and tissue remolding processes. MMP-8 is expressed mainly by polymorphonuclear leukocytes and is not expressed constitutively by most non-leukocytes. We studied the constitutive and TNF-α-induced expression of MMP-8 in cultured human uveal melanocytes (UM) and the relevant signal pathways involved. Conditioned media and cells were collected from UM and other cell types. MMP-8 proteins and mRNA were measured using ELISA kit, western blot and real time RT-PCR, respectively. Phosphorylated p38 MAPK, ERK1/2, and JNK1/2 were measured by ELISA kit and western blot. Very high levels of MMP-8 proteins and mRNA were detected in the conditioned media and cell lysates in 11 UM cell lines and three uveal melanoma cell lines cultured without serum, but not in media and cell lysates from other ocular resident cells or 12 malignant cell lines from other tissues, with exception of cutaneous melanoma cells. TNF-α moderately increased MMP-8 mRNA and protein levels in a dose- and time-dependent manner, accompanied by a significant increase of phosphorylated JNK1/2 and ERK1/2 in cell lysates. ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors significantly blocked TNF-α-induced and constitutive expression of MMP-8 in UM. This is the first report on the expression and secretion of MMP-8 by UM and uveal melanoma cells. The data suggest that UM may play a role in the remolding process and pathogenesis of inflammatory-related diseases in the eye via secretion of MMP-8.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Melanocitos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Úvea/citología , Adulto , Anciano , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Melanocitos/metabolismo , Persona de Mediana Edad , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Exp Eye Res ; 166: 116-119, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074386

RESUMEN

In this study we compared polarized mouse T-helper (Th) lymphocytes of four populations, sensitized against an ocular antigen, for their patterns of migration and induction of inflammatory processes in recipient mouse eyes expressing the target antigen. Th1, Th2, Th9 and Th17 cells transgenically expressing T-cell receptor (TCR) specific against hen egg lysozyme (HEL) were adoptively transferred to recipient mice expressing HEL in their eyes. Recipient eyes collected 4 or 7 days post injection were analyzed for histopathological changes. Th1 and Th17 cells induced moderate to severe intraocular inflammation in the recipient mouse eyes, but essentially did not migrate into the conjunctiva. In contrast, Th2 and Th9 cells invaded minimally the intraocular space of recipient eyes, but accumulated in the limbus and migrated into the conjunctiva of the recipient mice and initiated allergy-like inflammatory responses, as indicated by remarkable eosinophil involvement. These data thus shed new light on the differences between the migration patterns and ocular pathogenic processes mediated by Th1/Th17 and by Th2/Th9 populations.


Asunto(s)
Movimiento Celular , Conjuntiva/patología , Eosinofilia/patología , Limbo de la Córnea/parasitología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Modelos Animales de Enfermedad , Cristalino/metabolismo , Ratones , Muramidasa , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
17.
J Immunol ; 196(3): 1013-25, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26712943

RESUMEN

During chronic inflammation, tertiary lymphoid tissue (TLT) can form within an inflamed organ, including the CNS. However, little is known about TLT formation in the neuroretina. In a novel spontaneous autoimmune mouse model of uveitis (R161H), we identified well-organized lymphoid aggregates in the retina and examined them for TLT characteristics. Presence of immune cells, tissue-specific markers, and gene expression patterns typically associated with germinal centers and T follicular helper cells were examined using immunohistochemistry and gene analysis of laser capture microdissected retina. Our data revealed the retinal lymphoid structures contained CD4(+) T cells and B cells in well-defined zonal areas that expressed classic germinal center markers, peanut lectin (agglutinin) and GL-7. Gene expression analysis showed upregulation of T follicular helper cell markers, most notably CXCR5 and its ligand CXCL13, and immunohistochemical analysis confirmed CXCR5 expression, typically associated with CD4(+) T follicular helper cells. Highly organized stromal cell networks, a hallmark of organized lymphoid tissue, were also present. Positive staining for phospho-Zap70 in retina-specific T cells indicated CD4(+) T cells were being activated within these lymphoid structures. CD138(+)/B220(+) plasma cells were detected, suggesting the retinal lymphoid aggregates give rise to functional germinal centers, which produce Abs. Interestingly, eyes with lymphoid aggregates exhibited lower inflammatory scores by fundus examination and a slower initial rate of loss of visual function by electroretinography, compared with eyes without these structures. Our findings suggest that the lymphoid aggregates in the retina of R161H mice represent organized TLT, which impact the course of chronic uveitis.


Asunto(s)
Enfermedades Autoinmunes/patología , Tejido Linfoide/patología , Uveítis/patología , Animales , Enfermedades Autoinmunes/inmunología , Modelos Animales de Enfermedad , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Captura por Microdisección con Láser , Tejido Linfoide/inmunología , Ratones , Ratones Transgénicos , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Transcriptoma , Uveítis/inmunología , Visión Ocular/fisiología
18.
Biochim Biophys Acta ; 1862(6): 1214-27, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26851658

RESUMEN

ßγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the ßA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant ßA3/A1-crystallin protein. Transgenic expression of mutant ßA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del ßA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts.


Asunto(s)
Apoptosis , Catarata/genética , Cristalino/patología , Empalme del ARN , Respuesta de Proteína Desplegada , Cadena A de beta-Cristalina/genética , Animales , Secuencia de Bases , Catarata/patología , Línea Celular , Exones , Humanos , Cristalino/citología , Cristalino/metabolismo , Ratones Transgénicos , Isoformas de Proteínas/genética , ARN Mensajero/genética , Eliminación de Secuencia
19.
J Immunol ; 194(7): 3011-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25716996

RESUMEN

Experimental autoimmune uveitis (EAU) induced in mice by immunization with the retinal Ag interphotoreceptor retinoid-binding protein (IRBP) is a model of human autoimmune uveitis. We examined whether T regulatory cells (Tregs) found in uveitic eyes are IRBP specific, functionally suppressive, and play a role in natural resolution of disease and in maintenance of remission. Progressive increase of Foxp3(+) Treg to T effector cell (Teff) ratio in uveitic eyes correlated with resolution of disease. At peak disease, up to 20% of Tregs (CD4(+)Foxp3(+)) and up to 60% of Teffs (CD4(+)Foxp3(-)) were IRBP specific, whereas in lymphoid organs retina-specific T cells were undetectable. Tregs isolated from eyes of mice with EAU efficiently suppressed IRBP-specific responses of Teffs from the same eyes. Importantly, systemic depletion of Tregs at peak disease delayed resolution of EAU, and their depletion after resolution triggered a relapse. This could be partially duplicated by depletion of Tregs locally within the eye. Thus, the T cell infiltrate in uveitic eyes of normal mice with a polyclonal T cell repertoire is highly enriched in IRBP-specific Tregs and Teffs. Unlike what has been reported for Tregs in other inflammatory sites, Tregs from uveitic eyes appear unimpaired functionally. Finally, Foxp3(+) Tregs play a role in the natural resolution of uveitis and in the maintenance of remission, which occurs at least in part through an effect that is local to the eye.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Retina/inmunología , Linfocitos T Reguladores/inmunología , Uveítis/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Metilación de ADN , Modelos Animales de Enfermedad , Proteínas del Ojo/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunomodulación , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Depleción Linfocítica , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Recurrencia , Retina/patología , Proteínas de Unión al Retinol/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Uveítis/genética , Uveítis/patología
20.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899048

RESUMEN

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Asunto(s)
Estudios de Asociación Genética , Variación Genética , Degeneración Macular/genética , Proteínas de Microfilamentos/genética , Adulto , Anciano , Secuencia de Aminoácidos , Lámina Basal de la Coroides/metabolismo , Análisis Mutacional de ADN , Exoma , Matriz Extracelular/metabolismo , Fibrilina-2 , Fibrilinas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Macular/diagnóstico , Masculino , Metaanálisis como Asunto , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Estabilidad Proteica , Retina/metabolismo , Retina/patología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA