Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Microencapsul ; 40(4): 217-232, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36752024

RESUMEN

Azithromycin is an antibiotic proposed as a treatment for the coronavirus disease 2019 (COVID-19) due to its immunomodulatory activity. The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there was an improvement in dispersibility of the chitosan-related formulations. It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggested the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19.


Asunto(s)
COVID-19 , Quitosano , Nanopartículas , Humanos , Azitromicina , Polvos , Administración por Inhalación , Tratamiento Farmacológico de COVID-19 , Aerosoles y Gotitas Respiratorias , Tamaño de la Partícula
2.
Eye Contact Lens ; 43(1): 23-31, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27763911

RESUMEN

Contact lens discomfort is a common problem that can lead to unsuccessful or limited contact lens wear. Although many factors may contribute to contact lens discomfort, limited research has explored the influence of ethnicity-related differences in the anatomy and physiology of the ocular surface. Therefore, we performed a search of the literature in PubMed using key words related to "ocular surface" paired with the terms "race" and "ethnicity." The goal of this review was to determine potential areas of research regarding ethnicity differences, particularly between Asian and non-Asian eyes, in ocular surface integrity to advance our understanding of contact lens discomfort.


Asunto(s)
Lentes de Contacto/efectos adversos , Córnea/fisiología , Enfermedades de la Córnea/etiología , Síndromes de Ojo Seco/etiología , Etnicidad , Enfermedades de los Párpados/etiología , Párpados/fisiología , Enfermedades de la Córnea/etnología , Síndromes de Ojo Seco/etnología , Enfermedades de los Párpados/etnología , Humanos , Lágrimas/fisiología
3.
Kidney Int ; 90(6): 1262-1273, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27591083

RESUMEN

Primary glomerulocystic kidney disease is a special form of renal cystic disorder characterized by Bowman's space dilatation in the absence of tubular cysts. ZEB2 is a SMAD-interacting transcription factor involved in Mowat-Wilson syndrome, a congenital disorder with an increased risk for kidney anomalies. Here we show that deletion of Zeb2 in mesenchyme-derived nephrons with either Pax2-cre or Six2-cre causes primary glomerulocystic kidney disease without tubular cysts in mice. Glomerulotubular junction analysis revealed many atubular glomeruli in the kidneys of Zeb2 knockout mice, which explains the presence of glomerular cysts in the absence of tubular dilatation. Gene expression analysis showed decreased expression of early proximal tubular markers in the kidneys of Zeb2 knockout mice preceding glomerular cyst formation, suggesting that defects in proximal tubule development during early nephrogenesis contribute to the formation of congenital atubular glomeruli. At the molecular level, Zeb2 deletion caused aberrant expression of Pkd1, Hnf1ß, and Glis3, three genes causing glomerular cysts. Thus, Zeb2 regulates the morphogenesis of mesenchyme-derived nephrons and is required for proximal tubule development and glomerulotubular junction formation. Our findings also suggest that ZEB2 might be a novel disease gene in patients with primary glomerular cystic disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central/genética , Esmalte Dental/anomalías , Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodominio/fisiología , Enfermedades Renales Quísticas/genética , Riñón/embriología , Proteínas Represoras/fisiología , Animales , Proteínas de Unión al ADN , Factor Nuclear 1-beta del Hepatocito/metabolismo , Riñón/metabolismo , Ratones Noqueados , Proteínas Represoras/metabolismo , Canales Catiónicos TRPP/metabolismo , Transactivadores/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
4.
Hum Genet ; 134(8): 905-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026792

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.


Asunto(s)
Proteínas Activadoras de GTPasa , Péptidos y Proteínas de Señalización Intercelular , Mutación , Proteínas del Tejido Nervioso , Receptores Inmunológicos , Transducción de Señal/genética , Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Exoma , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factores de Riesgo , Anomalías Urogenitales/embriología , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/embriología , Reflujo Vesicoureteral/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-23291308

RESUMEN

Goldfish (Carassius auratus L.) are highly tolerant of environmental hypoxia, and with appropriate acclimation may survive and remain active for several days in the complete absence of oxygen. Previous work suggests that the hypoxia-induced activation of cardiac ATP-sensitive potassium (KATP) channels serves to increase tolerance of low oxygen in many species. For goldfish, we have previously characterized a nitric oxide (NO)- and cGMP-dependent pathway by which this channel activation occurs in acute hypoxia. The purpose of the present study was to resolve alterations in KATP channel activity and relevant gene expression in response to acclimation under moderately hypoxic conditions (2.6mg O2/L for seven days at 22°C). Intracellular action potential duration in excised ventricles from hypoxia-acclimated animals was significantly (p<0.05) reduced at both 50% and 90% of full repolarization relative to those from normoxia-acclimated fish. In cell-attached ventricular membrane patches from hypoxia-acclimated goldfish, sarcolemmal KATP channel open probability (NPo) was significantly enhanced vs. control. Of the two genes coding for the pore-forming subunits of cardiac KATP channels (Kir6.1 and Kir6.2), mRNA transcription of kcnj8 (revealed by quantitative real-time PCR) was unchanged while kcnj11 was downregulated in response to chronic low oxygen. The mRNA levels for hif1a (hypoxia inducible factor 1α) in the hearts of hypoxia-acclimated fish were significantly enhanced, as was nitric oxide synthase (nos2) and the sulfonylurea receptor regulatory subunit (sur2, abcc9). These data suggest that prior whole-animal acclimation to chronic hypoxia enhances cardioprotective sarcolemmal KATP currents by altering transcription of regulatory proteins.


Asunto(s)
Carpa Dorada/fisiología , Hipoxia/fisiopatología , Canales KATP/metabolismo , Potenciales de Acción/fisiología , Animales , Carpa Dorada/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxígeno/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sarcolema/metabolismo , Sarcolema/fisiología , Receptores de Sulfonilureas/metabolismo
6.
Front Pharmacol ; 14: 1137983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383708

RESUMEN

Introduction: In the last few decades, there has been a rapid development in cancer therapies and improved detection strategies, hence the death rates caused by cancer have decreased. However, it has been reported that cardiovascular disease has become the second leading cause of long-term morbidity and fatality among cancer survivors. Cardiotoxicity from anticancer drugs affects the heart's function and structure and can occur during any stage of the cancer treatments, which leads to the development of cardiovascular disease. Objectives: To investigate the association between anticancer drugs for non-small cell lung cancer (NSCLC) and cardiotoxicity as to whether: different classes of anticancer drugs demonstrate different cardiotoxicity potentials; different dosages of the same drug in initial treatment affect the degree of cardiotoxicity; and accumulated dosage and/or duration of treatments affect the degree of cardiotoxicity. Methods: This systematic review included studies involving patients over 18 years old with NSCLC and excluded studies in which patients' treatments involve radiotherapy only. Electronic databases and registers including Cochrane Library, National Cancer Institute (NCI) Database, PubMed, Scopus, Web of Science, ClinicalTrials.gov and the European Union Clinical Trials Register were systematically searched from the earliest available date up until November 2020. A full version protocol of this systematic review (CRD42020191760) had been published on PROSPERO. Results: A total of 1785 records were identified using specific search terms through the databases and registers; 74 eligible studies were included for data extraction. Based on data extracted from the included studies, anticancer drugs for NSCLC that are associated with cardiovascular events include bevacizumab, carboplatin, cisplatin, crizotinib, docetaxel, erlotinib, gemcitabine and paclitaxel. Hypertension was the most reported cardiotoxicity as 30 studies documented this cardiovascular adverse event. Other reported treatment-related cardiotoxicities include arrhythmias, atrial fibrillation, bradycardia, cardiac arrest, cardiac failure, coronary artery disease, heart failure, ischemia, left ventricular dysfunction, myocardial infarction, palpitations, and tachycardia. Conclusion: The findings of this systematic review have provided a better understanding of the possible association between cardiotoxicities and anticancer drugs for NSCLC. Whilst variation is observed across different drug classes, the lack of information available on cardiac monitoring can result in underestimation of this association. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020191760, identifier PROSPERO CRD42020191760.

7.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36670992

RESUMEN

As the blood-brain barrier (BBB) prevents most compounds from entering the brain, nanocarrier delivery systems are frequently being explored to potentially enhance the passage of drugs due to their nanometer sizes and functional characteristics. This study aims to investigate whether Pluronic® F68 (P68) and dequalinium (DQA) nanocarriers can improve the ability of curcumin, n-acetylcysteine (NAC) and/or deferoxamine (DFO), to access the brain, specifically target mitochondria and protect against rotenone by evaluating their effects in a combined Transwell® hCMEC/D3 BBB and SH-SY5Y based cellular Parkinson's disease (PD) model. P68 + DQA nanoformulations enhanced the mean passage across the BBB model of curcumin, NAC and DFO by 49%, 28% and 49%, respectively (p < 0.01, n = 6). Live cell mitochondrial staining analysis showed consistent co-location of the nanocarriers within the mitochondria. P68 + DQA nanocarriers also increased the ability of curcumin and NAC, alone or combined with DFO, to protect against rotenone induced cytotoxicity and oxidative stress by up to 19% and 14% (p < 0.01, n = 6), as measured by the MTT and mitochondrial hydroxyl radical assays respectively. These results indicate that the P68 + DQA nanocarriers were successful at enhancing the protective effects of curcumin, NAC and/or DFO by increasing the brain penetrance and targeted delivery of the associated bioactives to the mitochondria in this model. This study thus emphasises the potential effectiveness of this nanocarrier strategy in fully utilising the therapeutic benefit of these antioxidants and lays the foundation for further studies in more advanced models of PD.

8.
Brain Behav Immun ; 24(1): 83-95, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19679181

RESUMEN

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Asunto(s)
Analgésicos Opioides/farmacología , Antígeno 96 de los Linfocitos/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Analgesia , Animales , Línea Celular , Simulación por Computador , Calor , Hiperalgesia/psicología , Bombas de Infusión , Inyecciones Espinales , Antígeno 96 de los Linfocitos/agonistas , Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Masculino , Ratones , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/psicología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/antagonistas & inhibidores , Transfección
9.
Antioxidants (Basel) ; 9(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660079

RESUMEN

Oxidative stress is a key mediator in the development and progression of Parkinson's disease (PD). The antioxidant n-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 µM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability (p = 0.0001), increased iron (p = 0.0033) and oxidative stress (p ≤ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD.

10.
Front Cell Dev Biol ; 8: 608044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490071

RESUMEN

G Protein Suppressor 2 (GPS2) is a multifunctional protein that exerts important roles in inflammation and metabolism in adipose, liver, and immune cells. GPS2 has recently been identified as a significantly mutated gene in breast cancer and other malignancies and proposed to work as a putative tumor suppressor. However, molecular mechanisms by which GPS2 prevents cancer development and/or progression are largely unknown. Here, we have profiled the phenotypic changes induced by GPS2 depletion in MDA-MB-231 triple negative breast cancer cells and investigated the underlying molecular mechanisms. We found that GPS2-deleted MDA-MB-231 cells exhibited increased proliferative, migratory, and invasive properties in vitro, and conferred greater tumor burden in vivo in an orthotopic xenograft mouse model. Transcriptomic, proteomic and phospho-proteomic profiling of GPS2-deleted MBA-MB-231 revealed a network of altered signals that relate to cell growth and PI3K/AKT signaling. Overlay of GPS2-regulated gene expression with MDA-MB-231 cells modified to express constitutively active AKT showed significant overlap, suggesting that sustained AKT activation is associated with loss of GPS2. Accordingly, we demonstrate that the pro-oncogenic phenotypes associated with GPS2 deletion are rescued by pharmacological inhibition of AKT with MK2206. Collectively, these observations confirm a tumor suppressor role for GPS2 and reveal that loss of GPS2 promotes breast cancer cell proliferation and tumor growth through uncontrolled activation of AKT signaling. Moreover, our study points to GPS2 as a potential biomarker for a subclass of breast cancers that would be responsive to PI3K-class inhibitor drugs.

11.
Mol Cancer Ther ; 16(12): 2849-2861, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28878028

RESUMEN

Prognosis of triple-negative breast cancer (TNBC) remains poor. To identify shared and selective vulnerabilities of basal-like TNBC, the most common TNBC subtype, a directed siRNA lethality screen was performed in 7 human breast cancer cell lines, focusing on 154 previously identified dependency genes of 1 TNBC line. Thirty common dependency genes were identified, including multiple proteasome and RNA splicing genes, especially those associated with the U4/U6.U5 tri-snRNP complex (e.g., PRPF8, PRPF38A). PRPF8 or PRPF38A knockdown or the splicing modulator E7107 led to widespread intronic retention and altered splicing of transcripts involved in multiple basal-like TNBC dependencies, including protein homeostasis, mitosis, and apoptosis. E7107 treatment suppressed the growth of basal-A TNBC cell line and patient-derived basal-like TNBC xenografts at a well-tolerated dose. The antitumor response was enhanced by adding the proteasome inhibitor bortezomib. Thus, inhibiting both splicing and the proteasome might be an effective approach for treating basal-like TNBC. Mol Cancer Ther; 16(12); 2849-61. ©2017 AACR.


Asunto(s)
Empalme del ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Proliferación Celular , Femenino , Humanos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/mortalidad
12.
JCI Insight ; 1(19): e86934, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27882344

RESUMEN

The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Podocitos/citología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Animales , Movimiento Celular , Riñón , Ratones , Ratones Noqueados
13.
World J Surg ; 32(12): 2593-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17960454

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the performance of high-resolution ultrasonography in the detection of clinically and mammographically occult breast cancer. MATERIALS AND METHODS: From September 2003 to November 2006, a total of 1485 patients were confirmed to have in situ or invasive breast cancer in Hong Kong Sanatorium and Hospital Breast Care Centre. All patients underwent mammography (MMG) and/ or sonography (USG) evaluation. Patients' age and size of tumor detected by USG alone were compared with those detected by MMG. RESULTS: Altogether, 222 patients (17%) had positive imaging findings on USG only, among which 22 (13%) patients had nonpalpable tumors. Performing USG increased the cancer detection rate among clinically and mammographically occult breast lesions by 14.3%. The mean size of the tumors detected only by USG was 1.98 cm, which was not significantly different from the mean size of tumor detected by MMG (1.46) (p = 0.23). This remains true in the group of patients with nonpalpable tumors (1.36 vs. 1.46 cm, p = 0.88). The sensitivity of USG is 91%, which is significantly higher than that of MMG (78%) (p = 0.001). This remains true in patients age <40 or > or = 40, tumor grading I toIII, and LVI +/- cases. However, MMG had higher sensitivity in the group of patients with nonpalpable tumors (73% vs. 62%, p = 0.01) and noninvasive cancers (72% vs. 69%, p = 0.01). CONCLUSIONS: The use of high-resolution USG may lead to detection of a significant number of occult cancers that are no different in size from nonpalpable mammographically detected lesions.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Carcinoma/diagnóstico por imagen , Ultrasonografía Mamaria , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Carcinoma/patología , Carcinoma/cirugía , Estudios de Cohortes , Femenino , Humanos , Mamoplastia , Mamografía , Mastectomía , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA