Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(5): 1995-2006, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38888139

RESUMEN

PURPOSE: To introduce an alternative idea for fat suppression that is suited both for low-field applications where conventional fat-suppression approaches become ineffective due to narrow spectral separation and for applications with strong B0 homogeneities. METHODS: Separation of fat and water is achieved by sweeping the frequency of RF saturation pulses during continuous radial acquisition and calculating frequency-resolved images using regularized iterative reconstruction. Voxel-wise signal-response curves are extracted that reflect tissue's response to RF saturation at different frequencies and allow the classification into fat or water. This information is then utilized to generate water-only composite images. The principle is demonstrated in free-breathing abdominal and neck examinations using stack-of-stars 3D balanced SSFP (bSSFP) and gradient-recalled echo (GRE) sequences at 0.55 and 3T. Moreover, a potential extension toward quantitative fat/water separation is described. RESULTS: Experiments with a proton density fat fraction (PDFF) phantom validated the reliability of fat/water separation using signal-response curves. As demonstrated for abdominal imaging at 0.55T, the approach resulted in more uniform fat suppression without loss of water signal and in improved CSF-to-fat signal ratio. Moreover, the approach provided consistent fat suppression in 3T neck exams where conventional spectrally-selective fat saturation failed due to strong local B0 inhomogeneities. The feasibility of simultaneous fat/water quantification has been demonstrated in a PDFF phantom. CONCLUSION: The proposed principle achieves reliable fat suppression in low-field applications and adapts to high-field applications with strong B0 inhomogeneity. Moreover, the principle potentially provides a basis for developing an alternative approach for PDFF quantification.


Asunto(s)
Tejido Adiposo , Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Tejido Adiposo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Ondas de Radio , Sensibilidad y Especificidad , Abdomen/diagnóstico por imagen , Imagenología Tridimensional/métodos
2.
NMR Biomed ; : e5247, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183645

RESUMEN

This work proposes MP-Grasp4D (magnetization-prepared golden-angle radial sparse parallel 4D) MRI, a free-breathing, inversion recovery (IR)-prepared, time-resolved 4D MRI technique with improved T1-weighted contrast. MP-Grasp4D MRI acquisition incorporates IR preparation into a radial gradient echo sequence. MP-Grasp4D employs a golden-angle navi-stack-of-stars sampling scheme, where imaging data of rotating radial stacks and navigator stacks (acquired at a consistent rotation angle) are alternately acquired. The navigator stacks are used to estimate a temporal basis for low-rank subspace-constrained reconstruction. This allows for the simultaneous capture of both IR-induced contrast changes and respiratory motion. One temporal frame of the imaging volume in MP-Grasp4D MRI is reconstructed from a single stack and an adjacent navigator stack on average, resulting in a nominal temporal resolution of 0.16 seconds per volume. Images corresponding to the optimal inversion time (TI) can be retrospectively selected for providing the best image contrast. Reader studies were conducted to assess the performance of MP-Grasp4D MRI in liver imaging across 30 subjects in comparison with standard Grasp4D MRI without IR preparation. MP-Grasp4D MRI received significantly higher scores (P < 0.05) than Grasp4D in all assessment categories. There was a moderate to almost perfect agreement (kappa coefficient from 0.42 to 0.9) between the two readers for image quality assessment. When the scan time is reduced, MP-Grasp4D MRI preserves image contrast and quality, demonstrating additional acceleration capability. MP-Grasp4D MRI improves T1-weighted contrast for free-breathing time-resolved 4D MRI and eliminates the need for explicit motion compensation. This method is expected to be valuable in different MRI applications such as MR-guided radiotherapy.

3.
NMR Biomed ; : e5262, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323100

RESUMEN

Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.

4.
J Magn Reson Imaging ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485244

RESUMEN

BACKGROUND: Postacute Covid-19 patients commonly present with respiratory symptoms; however, a noninvasive imaging method for quantitative characterization of respiratory patterns is lacking. PURPOSE: To evaluate if quantitative characterization of respiratory pattern on free-breathing higher temporal resolution MRI stratifies patients by cardiopulmonary symptom burden. STUDY TYPE: Prospective analysis of retrospectively acquired data. SUBJECTS: A total of 37 postacute Covid-19 patients (25 male; median [interquartile range (IQR)] age: 58 [42-64] years; median [IQR] days from acute infection: 335 [186-449]). FIELD STRENGTH/SEQUENCE: 0.55 T/two-dimensional coronal true fast imaging with steady-state free precession (trueFISP) at higher temporal resolution. ASSESSMENT: Patients were stratified into three groups based on presence of no (N = 11), 1 (N = 14), or ≥2 (N = 14) cardiopulmonary symptoms, assessed using a standardized symptom inventory within 1 month of MRI. An automated lung postprocessing workflow segmented each lung in each trueFISP image (temporal resolution 0.2 seconds) and respiratory curves were generated. Quantitative parameters were derived including tidal lung area, rates of inspiration and expiration, lung area coefficient of variability (CV), and respiratory incoherence (departure from sinusoidal pattern) were. Pulmonary function tests were recorded if within 1 month of MRI. Qualitative assessment of respiratory pattern and lung opacity was performed by three independent readers with 6, 9, and 23 years of experience. STATISTICAL TESTS: Analysis of variance to assess differences in demographic, clinical, and quantitative MRI parameters among groups; univariable analysis and multinomial logistic regression modeling to determine features predictive of patient symptom status; Akaike information criterion to compare the quality of regression models; Cohen and Fleiss kappa (κ) to quantify inter-reader reliability. Two-sided 5% significance level was used. RESULTS: Tidal area and lung area CV were significantly higher in patients with two or more symptoms than in those with one or no symptoms (area: 15.4 cm2 vs. 12.9 cm2 vs. 12.8 cm2 ; CV: 0.072, 0.067, and 0.058). Respiratory incoherence was significantly higher in patients with two or more symptoms than in those with one or no symptoms (0.05 vs. 0.043 vs. 0.033). There were no significant differences in patient age (P = 0.19), sex (P = 0.88), lung opacity severity (P = 0.48), or pulmonary function tests (P = 0.35-0.97) among groups. Qualitative reader assessment did not distinguish between groups and showed slight inter-reader agreement (κ = 0.05-0.11). DATA CONCLUSION: Quantitative respiratory pattern measures derived from dynamic higher-temporal resolution MRI have potential to stratify patients by symptom burden in a postacute Covid-19 cohort. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.

5.
J Natl Compr Canc Netw ; 22(3): 158-166, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626807

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PC) is a highly lethal malignancy with a survival rate of only 12%. Surveillance is recommended for high-risk individuals (HRIs), but it is not widely adopted. To address this unmet clinical need and drive early diagnosis research, we established the Pancreatic Cancer Early Detection (PRECEDE) Consortium. METHODS: PRECEDE is a multi-institutional international collaboration that has undertaken an observational prospective cohort study. Individuals (aged 18-90 years) are enrolled into 1 of 7 cohorts based on family history and pathogenic germline variant (PGV) status. From April 1, 2020, to November 21, 2022, a total of 3,402 participants were enrolled in 1 of 7 study cohorts, with 1,759 (51.7%) meeting criteria for the highest-risk cohort (Cohort 1). Cohort 1 HRIs underwent germline testing and pancreas imaging by MRI/MR-cholangiopancreatography or endoscopic ultrasound. RESULTS: A total of 1,400 participants in Cohort 1 (79.6%) had completed baseline imaging and were subclassified into 3 groups based on familial PC (FPC; n=670), a PGV and FPC (PGV+/FPC+; n=115), and a PGV with a pedigree that does not meet FPC criteria (PGV+/FPC-; n=615). One HRI was diagnosed with stage IIB PC on study entry, and 35.1% of HRIs harbored pancreatic cysts. Increasing age (odds ratio, 1.05; P<.001) and FPC group assignment (odds ratio, 1.57; P<.001; relative to PGV+/FPC-) were independent predictors of harboring a pancreatic cyst. CONCLUSIONS: PRECEDE provides infrastructure support to increase access to clinical surveillance for HRIs worldwide, while aiming to drive early PC detection advancements through longitudinal standardized clinical data, imaging, and biospecimen captures. Increased cyst prevalence in HRIs with FPC suggests that FPC may infer distinct biological processes. To enable the development of PC surveillance approaches better tailored to risk category, we recommend adoption of subclassification of HRIs into FPC, PGV+/FPC+, and PGV+/FPC- risk groups by surveillance protocols.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/epidemiología , Detección Precoz del Cáncer/métodos , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Imagen por Resonancia Magnética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38722777

RESUMEN

OBJECTIVE: To perform image quality comparison between deep learning-based multiband diffusion-weighted sequence (DL-mb-DWI), accelerated multiband diffusion-weighted sequence (accelerated mb-DWI), and conventional multiband diffusion-weighted sequence (conventional mb-DWI) in patients undergoing clinical liver magnetic resonance imaging (MRI). METHODS: Fifty consecutive patients who underwent clinical MRI of the liver at a 1.5-T scanner, between September 1, 2021, and January 31, 2022, were included in this study. Three radiologists independently reviewed images using a 5-point Likert scale for artifacts and image quality factors, in addition to assessing the presence of liver lesions and lesion conspicuity. RESULTS: DL-mb-DWI acquisition time was 65.0 ± 2.4 seconds, significantly (P < 0.001) shorter than conventional mb-DWI (147.5 ± 19.2 seconds) and accelerated mb-DWI (94.3 ± 1.8 seconds). DL-mb-DWI received significantly higher scores than conventional mb-DWI for conspicuity of the left lobe (P < 0.001), sharpness of intrahepatic vessel margin (P < 0.001), sharpness of the pancreatic contour (P < 0.001), in-plane motion artifact (P = 0.002), and overall image quality (P = 0.005) by reader 2. DL-mb-DWI received significantly higher scores for conspicuity of the left lobe (P = 0.006), sharpness of the pancreatic contour (P = 0.020), and in-plane motion artifact (P = 0.042) by reader 3. DL-mb-DWI received significantly higher scores for strength of fat suppression (P = 0.004) and sharpness of the pancreatic contour (P = 0.038) by reader 1. The remaining quality parameters did not reach statistical significance for reader 1. CONCLUSIONS: Novel diffusion-weighted MRI sequence with deep learning-based image reconstruction demonstrated significantly decreased acquisition times compared with conventional and accelerated mb-DWI sequences, while maintaining or improving image quality for routine abdominal MRI. DL-mb-DWI offers a potential alternative to conventional mb-DWI in routine clinical liver MRI.

7.
MAGMA ; 37(4): 671-680, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703246

RESUMEN

OBJECTIVE: Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS: In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS: Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS: These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Riñón , Humanos , Riñón/diagnóstico por imagen , Anisotropía , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Masculino , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión Tensora/métodos , Voluntarios Sanos , Microcirculación , Médula Renal/diagnóstico por imagen , Persona de Mediana Edad , Algoritmos , Movimiento (Física) , Adulto Joven
8.
Radiology ; 306(1): 47-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997609

RESUMEN

A 96-year-old woman had a suboptimal evaluation of liver observations at abdominal MRI due to significant respiratory motion. State-of-the-art strategies to minimize respiratory motion during clinical abdominal MRI are discussed.


Asunto(s)
Abdomen , Radiología , Femenino , Humanos , Anciano de 80 o más Años , Movimiento (Física) , Imagen por Resonancia Magnética , Radiografía , Respiración
9.
Magn Reson Med ; 90(1): 202-210, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36763847

RESUMEN

PURPOSE: To describe an inversion-recovery T1 -weighted radial stack-of-stars 3D gradient echo (GRE) sequence with comparable image quality to conventional MP-RAGE and to demonstrate how the radial acquisition scheme can be utilized for additional retrospective motion correction to improve robustness to head motion. METHODS: The proposed sequence, named MP-RAVE, has been derived from a previously described radial stack-of-stars 3D GRE sequence (RAVE) and includes a 180° inversion recovery pulse that is generated once for every stack of radial views. The sequence is combined with retrospective 3D motion correction to improve robustness. The effectiveness has been evaluated in phantoms and healthy volunteers and compared to conventional MP-RAGE acquisition. RESULTS: MP-RAGE and MP-RAVE anatomical images were rated "good" to "excellent" in overall image quality, with artifact level between "mild" and "no artifacts", and with no statistically significant difference between methods. During head motion, MP-RAVE showed higher inherent robustness with artifacts confined to local brain regions. In combination with motion correction, MP-RAVE provided noticeably improved image quality during different head motion and showed statistically significant improvement in image sharpness. CONCLUSION: MP-RAVE provides comparable image quality and contrast to conventional MP-RAGE with improved robustness to head motion. In combination with retrospective 3D motion correction, MP-RAVE can be a useful alternative to MP-RAGE, especially in non-cooperative or pediatric patients.


Asunto(s)
Medios de Contraste , Imagenología Tridimensional , Humanos , Niño , Estudios Retrospectivos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
10.
J Magn Reson Imaging ; 58(1): 210-220, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36399101

RESUMEN

BACKGROUND: Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE: To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE: Prospective. POPULATION: Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE: 3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT: BP and FC water signal decays were qualitatively compared. Renal arteries and velocities were visualized on PC-MRI. Systolic (peak velocity), diastolic (end stable velocity), and pre-systolic (before peak velocity) phases were identified. Following mutual information-based retrospective self-registration of DWI within each kidney, and Marchenko-Pastur Principal Component Analysis (MPPCA) denoising, combined IVIM-DTI analysis estimated mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues (λi) from tissue diffusivity (Dt ), perfusion fraction (fp ), and pseudodiffusivity (Dp , Dp,axial , Dp,radial ), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS: Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS: Water BP and FC signal decays showed no differences. Significant pulse sequence dependence occurred for λ1 , λ3 , FA, Dp , fp , Dp,axial , Dp,radial in cortex and medulla, and medullary λ2 . Significant cortex/medulla differences occurred with BP for all metrics except MD (systole [P = 0.224]; diastole [P = 0.556]). Significant phase dependence occurred for Dp , Dp,axial , Dp,radial for BP and medullary λ1 , λ2 , λ3 , MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 µm tubule diameter. DATA CONCLUSION: Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Imagen de Difusión Tensora , Riñón , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Anisotropía , Estudios Prospectivos , Estudios Retrospectivos , Riñón/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Agua
11.
J Magn Reson Imaging ; 58(4): 1055-1064, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36651358

RESUMEN

BACKGROUND: Demand for prostate MRI is increasing, but scan times remain long even in abbreviated biparametric MRIs (bpMRI). Deep learning can be leveraged to accelerate T2-weighted imaging (T2WI). PURPOSE: To compare conventional bpMRIs (CL-bpMRI) with bpMRIs including a deep learning-accelerated T2WI (DL-bpMRI) in diagnosing prostate cancer. STUDY TYPE: Retrospective. POPULATION: Eighty consecutive men, mean age 66 years (47-84) with suspected prostate cancer or prostate cancer on active surveillance who had a prostate MRI from December 28, 2020 to April 28, 2021 were included. Follow-up included prostate biopsy or stability of prostate-specific antigen (PSA) for 1 year. FIELD STRENGTH AND SEQUENCES: A 3 T MRI. Conventional axial and coronal T2 turbo spin echo (CL-T2), 3-fold deep learning-accelerated axial and coronal T2-weighted sequence (DL-T2), diffusion weighted imaging (DWI) with b = 50 sec/mm2 , 1000 sec/mm2 , calculated b = 1500 sec/mm2 . ASSESSMENT: CL-bpMRI and DL-bpMRI including the same conventional diffusion-weighted imaging (DWI) were presented to three radiologists (blinded to acquisition method) and to a deep learning computer-assisted detection algorithm (DL-CAD). The readers evaluated image quality using a 4-point Likert scale (1 = nondiagnostic, 4 = excellent) and graded lesions using Prostate Imaging Reporting and Data System (PI-RADS) v2.1. DL-CAD identified and assigned lesions of PI-RADS 3 or greater. STATISTICAL TESTS: Quality metrics were compared using Wilcoxon signed rank test, and area under the receiver operating characteristic curve (AUC) were compared using Delong's test. SIGNIFICANCE: P = 0.05. RESULTS: Eighty men were included (age: 66 ± 9 years; 17/80 clinically significant prostate cancer). Overall image quality results by the three readers (CL-T2, DL-T2) are reader 1: 3.72 ± 0.53, 3.89 ± 0.39 (P = 0.99); reader 2: 3.33 ± 0.82, 3.31 ± 0.74 (P = 0.49); reader 3: 3.67 ± 0.63, 3.51 ± 0.62. In the patient-based analysis, the reader results of AUC are (CL-bpMRI, DL-bpMRI): reader 1: 0.77, 0.78 (P = 0.98), reader 2: 0.65, 0.66 (P = 0.99), reader 3: 0.57, 0.60 (P = 0.52). Diagnostic statistics from DL-CAD (CL-bpMRI, DL-bpMRI) are sensitivity (0.71, 0.71, P = 1.00), specificity (0.59, 0.44, P = 0.05), positive predictive value (0.23, 0.24, P = 0.25), negative predictive value (0.88, 0.88, P = 0.48). CONCLUSION: Deep learning-accelerated T2-weighted imaging may potentially be used to decrease acquisition time for bpMRI. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos
12.
Eur Radiol ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047974

RESUMEN

Creating a patient-centered experience is becoming increasingly important for radiology departments around the world. The goal of patient-centered radiology is to ensure that radiology services are sensitive to patients' needs and desires. This article provides a framework for addressing the patient's experience by dividing their imaging journey into three distinct time periods: pre-exam, day of exam, and post-exam. Each time period has aspects that can contribute to patient anxiety. Although there are components of the patient journey that are common in all regions of the world, there are also unique features that vary by location. This paper highlights innovative solutions from different parts of the world that have been introduced in each of these time periods to create a more patient-centered experience. CLINICAL RELEVANCE STATEMENT: Adopting innovative solutions that help patients understand their imaging journey and decrease their anxiety about undergoing an imaging examination are important steps in creating a patient centered imaging experience. KEY POINTS: • Patients often experience anxiety during their imaging journey and decreasing this anxiety is an important component of patient centered imaging. • The patient imaging journey can be divided into three distinct time periods: pre-exam, day of exam, and post-exam. • Although components of the imaging journey are common, there are local differences in different regions of the world that need to be considered when constructing a patient centered experience.

13.
J Magn Reson Imaging ; 56(1): 184-195, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34877735

RESUMEN

BACKGROUND: Early diagnosis and treatment of prostate cancer (PCa) can be curative; however, prostate-specific antigen is a suboptimal screening test for clinically significant PCa. While prostate magnetic resonance imaging (MRI) has demonstrated value for the diagnosis of PCa, the acquisition time is too long for a first-line screening modality. PURPOSE: To accelerate prostate MRI exams, utilizing a variational network (VN) for image reconstruction. STUDY TYPE: Retrospective. SUBJECTS: One hundred and thirteen subjects (train/val/test: 70/13/30) undergoing prostate MRI. FIELD STRENGTH/SEQUENCE: 3.0 T; a T2 turbo spin echo (TSE) T2-weighted image (T2WI) sequence in axial and coronal planes, and axial echo-planar diffusion-weighted imaging (DWI). ASSESSMENT: Four abdominal radiologists evaluated the image quality of VN reconstructions of retrospectively under-sampled biparametric MRIs (bp-MRI), and standard bp-MRI reconstructions for 20 test subjects (studies). The studies included axial and coronal T2WI, DWI B50 seconds/mm2 and B1000 seconds/mm (4-fold T2WI, 3-fold DWI), all of which were evaluated separately for image quality on a Likert scale (1: non-diagnostic to 5: excellent quality). In another 10 test subjects, three readers graded lesions on bp-MRI-which additionally included calculated B1500 seconds/mm2 , and apparent diffusion coefficient map-according to the Prostate Imaging Reporting and Data System (PI-RADS v2.1), for both VN and standard reconstructions. Accuracy of PI-RADS ≥3 for clinically significant cancer was computed. Projected scan time of the retrospectively under-sampled biparametric exam was also computed. STATISTICAL TESTS: One-sided Wilcoxon signed-rank test was used for comparison of image quality. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for lesion detection and grading. Generalized estimating equation with cluster effect was used to compare differences between standard and VN bp-MRI. A P-value of <0.05 was considered statistically significant. RESULTS: Three of four readers rated no significant difference for overall quality between the standard and VN axial T2WI (Reader 1: 4.00 ± 0.56 (Standard), 3.90 ± 0.64 (VN) P = 0.33; Reader 2: 4.35 ± 0.74 (Standard), 3.80 ± 0.89 (VN) P = 0.003; Reader 3: 4.60 ± 0.50 (Standard), 4.55 ± 0.60 (VN) P = 0.39; Reader 4: 3.65 ± 0.99 (Standard), 3.60 ± 1.00 (VN) P = 0.38). All four readers rated no significant difference for overall quality between standard and VN DWI B1000 seconds/mm2 (Reader 1: 2.25 ± 0.62 (Standard), 2.45 ± 0.75 (VN) P = 0.96; Reader 2: 3.60 ± 0.92 (Standard), 3.55 ± 0.82 (VN) P = 0.40; Reader 3: 3.85 ± 0.72 (Standard), 3.55 ± 0.89 (VN) P = 0.07; Reader 4: 4.70 ± 0.76 (Standard); 4.60 ± 0.73 (VN) P = 0.17) and three of four readers rated no significant difference for overall quality between standard and VN DWI B50 seconds/mm2 (Reader 1: 3.20 ± 0.70 (Standard), 3.40 ± 0.75 (VN) P = 0.98; Reader 2: 2.85 ± 0.81 (Standard), 3.00 ± 0.79 (VN) P = 0.93; Reader 3: 4.45 ± 0.72 (Standard), 4.05 ± 0.69 (VN) P = 0.02; Reader 4: 4.50 ± 0.69 (Standard), 4.45 ± 0.76 (VN) P = 0.50). In the lesion evaluation study, there was no significant difference in the number of PI-RADS ≥3 lesions identified on standard vs. VN bp-MRI (P = 0.92, 0.59, 0.87) with similar sensitivity and specificity for clinically significant cancer. The average scan time of the standard clinical biparametric exam was 11.8 minutes, and this was projected to be 3.2 minutes for the accelerated exam. DATA CONCLUSION: Diagnostic accelerated biparametric prostate MRI exams can be performed using deep learning methods in <4 minutes, potentially enabling rapid screening prostate MRI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 5.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos
14.
Eur Radiol ; 32(1): 34-45, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34120229

RESUMEN

OBJECTIVES: To determine if golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced (DCE)-MRI allows simultaneous evaluation of perfusion and morphology in liver fibrosis. METHODS: Participants who were scheduled for liver biopsy or resection were enrolled (NCT02480972). Images were reconstructed at 12-s temporal resolution for morphologic assessment and at 3.3-s temporal resolution for quantitative evaluation. The image quality of the morphologic images was assessed on a four-point scale, and the Liver Imaging Reporting and Data System score was recorded for hepatic observations. Comparisons were made between quantitative parameters of DCE-MRI for the different fibrosis stages, and for hepatocellular carcinoma (HCCs) with different LR features. RESULTS: DCE-MRI of 64 participants (male = 48) were analyzed. The overall image quality consistently stood at 3.5 ± 0.4 to 3.7 ± 0.4 throughout the exam. Portal blood flow significantly decreased in participants with F2-F3 (n = 18, 175 ± 110 mL/100 mL/min) and F4 (n = 12, 98 ± 47 mL/100 mL/min) compared with those in participants with F0-F1 (n = 34, 283 ± 178 mL/100 mL/min, p < 0.05 for all). In participants with F4, the arterial fraction and extracellular volume were significantly higher than those in participants with F0-F1 and F2-F3 (p < 0.05). Compared with HCCs showing non-LR-M features (n = 16), HCCs with LR-M (n = 5) had a significantly prolonged mean transit time and lower arterial blood flow (p < 0.05). CONCLUSIONS: Liver MRI using GRASP obtains both sufficient spatial resolution for confident diagnosis and high temporal resolution for pharmacokinetic modeling. Significant differences were found between the MRI-derived portal blood flow at different hepatic fibrosis stages. KEY POINTS: A single MRI examination is able to provide both images with sufficient spatial resolution for anatomic evaluation and those with high temporal resolution for pharmacokinetic modeling. Portal blood flow was significantly lower in clinically significant hepatic fibrosis and mean transit time and extracellular volume increased in cirrhosis, compared with those in no or mild hepatic fibrosis. HCCs with different LR features showed different quantitative parameters of DCE-MRI: longer mean transit time and lower arterial flow were observed in HCCs with LR-M features.


Asunto(s)
Medios de Contraste , Neoplasias Hepáticas , Humanos , Cirrosis Hepática/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Perfusión
15.
AJR Am J Roentgenol ; 219(6): 903-914, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35856454

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a dismal survival rate. Screening the general population for early detection of PDAC is not recommended, but because early detection improves survival, high-risk individuals, defined as those meeting criteria based on a family history of PDAC and/or the presence of known pathogenic germline variant genes with PDAC risk, are recommended to undergo screening with MRI and/or endoscopic ultrasound at regular intervals. The Pancreatic Cancer Early Detection (PRECEDE) Consortium was formed in 2018 and is composed of gastroenterologists, geneticists, pancreatic surgeons, radiologists, statisticians, and researchers from 40 sites in North America, Europe, and Asia. The overarching goal of the PRECEDE Consortium is to facilitate earlier diagnosis of PDAC for high-risk individuals to increase survival of the disease. A standardized MRI protocol and reporting template are needed to enhance the quality of screening examinations, improve consistency of clinical management, and facilitate multiinstitutional research. We present a consensus statement to standardize MRI screening and reporting for individuals with elevated risk of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Detección Precoz del Cáncer , Carcinoma Ductal Pancreático/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Imagen por Resonancia Magnética , Estándares de Referencia , Neoplasias Pancreáticas
16.
Magn Reson Med ; 85(5): 2672-2685, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33306216

RESUMEN

PURPOSE: To describe an approach for detection of respiratory signals using a transmitted radiofrequency (RF) reference signal called Pilot-Tone (PT) and to use the PT signal for creation of motion-resolved images based on 3D stack-of-stars imaging under free-breathing conditions. METHODS: This work explores the use of a reference RF signal generated by a small RF transmitter, placed outside the MR bore. The reference signal is received in parallel to the MR signal during each readout. Because the received PT amplitude is modulated by the subject's breathing pattern, a respiratory signal can be obtained by detecting the strength of the received PT signal over time. The breathing-induced PT signal modulation can then be used for reconstructing motion-resolved images from free-breathing scans. The PT approach was tested in volunteers using a radial stack-of-stars 3D gradient echo (GRE) sequence with golden-angle acquisition. RESULTS: Respiratory signals derived from the proposed PT method were compared to signals from a respiratory cushion sensor and k-space-center-based self-navigation under different breathing conditions. Moreover, the accuracy was assessed using a modified acquisition scheme replacing the golden-angle scheme by a zero-angle acquisition. Incorporating the PT signal into eXtra-Dimensional (XD) motion-resolved reconstruction led to improved image quality and clearer anatomical depiction of the lung and liver compared to k-space-center signal and motion-averaged reconstruction, when binned into 6, 8, and 10 motion states. CONCLUSION: PT is a novel concept for tracking respiratory motion. Its small dimension (8 cm), high sampling rate, and minimal interaction with the imaging scan offers great potential for resolving respiratory motion.


Asunto(s)
Artefactos , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Imagen por Resonancia Magnética , Movimiento (Física) , Respiración
17.
NMR Biomed ; 34(7): e4531, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33902155

RESUMEN

In this work, we propose a free-breathing magnetic resonance fingerprinting (MRF) method that can be used to obtain B1+ -robust quantitative T1 maps of the abdomen in a clinically acceptable time. A three-dimensional MRF sequence with a radial stack-of-stars trajectory was implemented, and its k-space acquisition ordering was adjusted to improve motion-robustness in the context of MRF. The flip angle pattern was optimized using the Cramér-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900 and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated T1 values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artifacts can appear in the quantitative maps and confirmed that a motion-robust k-space ordering is essential. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate B1+ -robust quantitative maps of T1 and B1+ next to M0 -weighted images under free-breathing conditions at a clinically usable resolution within 5 min.


Asunto(s)
Abdomen/diagnóstico por imagen , Imagen por Resonancia Magnética , Respiración , Humanos , Movimiento (Física) , Fantasmas de Imagen
18.
Eur Radiol ; 31(11): 8447-8457, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33961086

RESUMEN

OBJECTIVE: To compare the image quality of an accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) with conventional T2-weighted FS sequence (conventional T2 FS) at 1.5 T. METHODS: One hundred consecutive patients who underwent clinical MRI of the liver at 1.5 T including the conventional T2-weighted fat-suppressed sequence (T2 FS) and accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction (DL HASTE-FS) were included. Images were reviewed independently by three blinded observers who used a 5-point confidence scale for multiple measures regarding the artifacts and image quality. Descriptive statistics and McNemar's test were used to compare image quality scores and percentage of lesions detected by each sequence, respectively. Intra-class correlation coefficient (ICC) was used to assess consistency in reader scores. RESULTS: Acquisition time for DL HASTE-FS was 51.23 +/ 10.1 s, significantly (p < 0.001) shorter than conventional T2-FS (178.9 ± 85.3 s). DL HASTE-FS received significantly higher scores than conventional T2-FS for strength and homogeneity of fat suppression; sharpness of liver margin; sharpness of intra-hepatic vessel margin; in-plane and through-plane respiratory motion; other ghosting artefacts; liver-fat contrast; and overall image quality (all, p < 0.0001). DL HASTE-FS also received higher scores for lesion conspicuity and sharpness of lesion margin (all, p < .001), without significant difference for liver lesion contrast (p > 0.05). CONCLUSIONS: Accelerated single-shot T2-weighted MRI of the liver with deep learning-based image reconstruction showed superior image quality compared to the conventional T2-weighted fat-suppressed sequence despite a 4-fold reduction in acquisition time. KEY POINTS: • Conventional fat-suppressed T2-weighted sequence (conventional T2 FS) can take unacceptably long to acquire and is the most commonly repeated sequence in liver MRI due to motion. • DL HASTE-FS demonstrated superior image quality, improved respiratory motion and other ghosting artefacts, and increased lesion conspicuity with comparable liver-to-lesion contrast compared to conventional T2FS sequence. • DL HASTE- FS has the potential to replace conventional T2 FS sequence in routine clinical MRI of the liver, reducing the scan time, and improving the image quality.


Asunto(s)
Aprendizaje Profundo , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética
19.
AJR Am J Roentgenol ; 217(5): 1132-1140, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33852355

RESUMEN

BACKGROUND. Multiple commercial and open-source software applications are available for texture analysis. Nonstandard techniques can cause undesirable variability that impedes result reproducibility and limits clinical utility. OBJECTIVE. The purpose of this study is to measure agreement of texture metrics extracted by six software packages. METHODS. This retrospective study included 40 renal cell carcinomas with contrast-enhanced CT from The Cancer Genome Atlas and Imaging Archive. Images were analyzed by seven readers at six sites. Each reader used one of six software packages to extract commonly studied texture features. Inter- and intrareader agreement for segmentation was assessed with intraclass correlation coefficients (ICCs). First-order (available in six packages) and second-order (available in three packages) texture features were compared between software pairs using Pearson correlation. RESULTS. Inter- and intrareader agreement was excellent (ICC, 0.93-1). First-order feature correlations were strong (r ≥ 0.8, p < .001) between 75% (21/28) of software pairs for mean intensity and SD, 48% (10/21) for entropy, 29% (8/28) for skewness, and 25% (7/28) for kurtosis. Of 15 second-order features, only cooccurrence matrix correlation, gray-level nonuniformity, and run-length nonuniformity showed strong correlation between software packages (r = 0.90-1, p < .001). CONCLUSION. Variability in first- and second-order texture features was common across software configurations and produced inconsistent results. Standardized algorithms and reporting methods are needed before texture data can be reliably used for clinical applications. CLINICAL IMPACT. It is important to be aware of variability related to texture software processing and configuration when reporting and comparing outputs.


Asunto(s)
Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Programas Informáticos , Tomografía Computarizada por Rayos X , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Programas Informáticos/normas
20.
Magn Reson Med ; 83(1): 94-108, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400028

RESUMEN

PURPOSE: To propose a highly accelerated, high-resolution dynamic contrast-enhanced MRI (DCE-MRI) technique called GRASP-Pro (golden-angle radial sparse parallel imaging with imProved performance) through a joint sparsity and self-calibrating subspace constraint with automated selection of contrast phases. METHODS: GRASP-Pro reconstruction enforces a combination of an explicit low-rank subspace-constraint and a temporal sparsity constraint. The temporal basis used to construct the subspace is learned from an intermediate reconstruction step using the low-resolution portion of radial k-space, which eliminates the need for generating the basis using auxiliary data or a physical signal model. A convolutional neural network was trained to generate the contrast enhancement curve in the artery, from which clinically relevant contrast phases are automatically selected for evaluation. The performance of GRASP-Pro was demonstrated for high spatiotemporal resolution DCE-MRI of the prostate and was compared against standard GRASP in terms of overall image quality, image sharpness, and residual streaks and/or noise level. RESULTS: Compared to GRASP, GRASP-Pro reconstructed dynamic images with enhanced sharpness, less residual streaks and/or noise, and finer delineation of the prostate without prolonging reconstruction time. The image quality improvement reached statistical significance (P < 0.05) in all the assessment categories. The neural network successfully generated contrast enhancement curves in the artery, and corresponding peak enhancement indexes correlated well with that from the manual selection. CONCLUSION: GRASP-Pro is a promising method for rapid and continuous DCE-MRI. It enables superior reconstruction performance over standard GRASP and allows reliable generation of artery enhancement curve to guide the selection of desired contrast phases for improving the efficiency of GRASP MRI workflow.


Asunto(s)
Automatización , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Próstata/diagnóstico por imagen , Algoritmos , Arterias/diagnóstico por imagen , Artefactos , Calibración , Medios de Contraste/farmacología , Compresión de Datos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Masculino , Reconocimiento de Normas Patrones Automatizadas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA