Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuropharmacology ; 226: 109398, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584883

RESUMEN

This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".


Asunto(s)
Trastorno Depresivo Mayor , Aprendizaje , Estados Unidos , Humanos , Fenotipo
2.
Obes Sci Pract ; 3(1): 95-98, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28392935

RESUMEN

OBJECTIVE: Unlike gastric banding or sleeve gastrectomy procedures, intestinal bypass procedures, Roux-en-Y gastric bypass in particular, lead to rapid improvements in glycaemia early after surgery. The bypass of the proximal small bowel may have weight loss and even caloric restriction-independent glucose-lowering properties on hepatic insulin sensitivity. In this first human mechanistic study, we examined this hypothesis by investigating the early effects of the duodeno-jejunal bypass liner (DJBL; GI Dynamics, USA) on the hepatic insulin sensitivity by using the gold standard euglycaemic hyperinsulinaemic clamp methodology. METHOD: Seven patients with obesity underwent measurement of hepatic insulin sensitivity at baseline, 1 week after a low-calorie liquid diet and after a further 1 week following insertion of the DJBL whilst on the same diet. RESULTS: Duodeno-jejunal bypass liner did not improve the insulin sensitivity of hepatic glucose production beyond the improvements achieved with caloric restriction. CONCLUSIONS: Caloric restriction may be the predominant driver of early increases in hepatic insulin sensitivity after the endoscopic bypass of the proximal small bowel. The same mechanism may be at play after Roux-en-Y gastric bypass and explain, at least in part, the rapid improvements in glycaemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA