Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7981): 74-79, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591304

RESUMEN

The integer quantum anomalous Hall (QAH) effect is a lattice analogue of the quantum Hall effect at zero magnetic field1-3. This phenomenon occurs in systems with topologically non-trivial bands and spontaneous time-reversal symmetry breaking. Discovery of its fractional counterpart in the presence of strong electron correlations, that is, the fractional QAH effect4-7, would open a new chapter in condensed matter physics. Here we report the direct observation of both integer and fractional QAH effects in electrical measurements on twisted bilayer MoTe2. At zero magnetic field, near filling factor ν = -1 (one hole per moiré unit cell), we see an integer QAH plateau in the Hall resistance Rxy quantized to h/e2 ± 0.1%, whereas the longitudinal resistance Rxx vanishes. Remarkably, at ν = -2/3 and -3/5, we see plateau features in Rxy at [Formula: see text] and [Formula: see text], respectively, whereas Rxx remains small. All features shift linearly versus applied magnetic field with slopes matching the corresponding Chern numbers -1, -2/3 and -3/5, precisely as expected for integer and fractional QAH states. Additionally, at zero magnetic field, Rxy is approximately 2h/e2 near half-filling (ν = -1/2) and varies linearly as ν is tuned. This behaviour resembles that of the composite Fermi liquid in the half-filled lowest Landau level of a two-dimensional electron gas at high magnetic field8-14. Direct observation of the fractional QAH and associated effects enables research in charge fractionalization and anyonic statistics at zero magnetic field.

2.
Nature ; 588(7838): 419-423, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328665

RESUMEN

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

3.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857889

RESUMEN

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

4.
Nano Lett ; 24(27): 8320-8326, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935843

RESUMEN

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even-odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even-odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

5.
Nano Lett ; 24(23): 6974-6980, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829211

RESUMEN

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number C of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change ΔC. We find that critical exponents extracted for the plateau phase transitions with ΔC = 1 and ΔC = 3 in QAH insulators are nearly identical. We construct a four-layer Chalker-Coddington network model to understand the consistent critical exponents for the plateau phase transitions with ΔC = 1 and ΔC = 3. This work will motivate further investigations into the critical behaviors of plateau phase transitions with different ΔC in QAH insulators.

6.
Nano Lett ; 24(26): 7962-7971, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885199

RESUMEN

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.

7.
Nat Mater ; 22(5): 570-575, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781950

RESUMEN

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5-10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

8.
Phys Rev Lett ; 132(6): 066604, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394580

RESUMEN

We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi_{2}Te_{4} thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi_{2}Te_{4} films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi_{2}Te_{4} films.

9.
Nano Lett ; 23(3): 1093-1099, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715442

RESUMEN

The quantum anomalous Hall (QAH) insulator carries dissipation-free chiral edge current and thus provides a unique opportunity to develop energy-efficient transformative information technology. Despite promising advances, the QAH insulator has thus far eluded any practical applications. In addition to its low working temperature, the QAH state in magnetically doped topological insulators usually deteriorates with time in ambient conditions. In this work, we store three QAH devices with similar initial properties in different environments. The QAH device without a protection layer in air shows clear degradation and becomes hole-doped. The QAH device kept in an argon glovebox without a protection layer shows no measurable degradation after 560 h, and the device protected by a 3 nm AlOx protection layer in air shows minimal degradation with stable QAH properties. Our work shows a route to preserve the dissipation-free chiral edge state in QAH devices for potential applications in quantum information technology.

10.
Nano Lett ; 23(7): 2483-2489, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36930727

RESUMEN

To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.

11.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36302957

RESUMEN

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

12.
Phys Rev Lett ; 130(8): 086201, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898119

RESUMEN

In quantum anomalous Hall (QAH) insulators, the interior is insulating but electrons can travel with zero resistance along one-dimensional (1D) conducting paths known as chiral edge channels (CECs). These CECs have been predicted to be confined to the 1D edges and exponentially decay in the two-dimensional (2D) bulk. In this Letter, we present the results of a systematic study of QAH devices fashioned in a Hall bar geometry of different widths under gate voltages. At the charge neutral point, the QAH effect persists in a Hall bar device with a width of only ∼72 nm, implying the intrinsic decaying length of CECs is less than ∼36 nm. In the electron-doped regime, we find that the Hall resistance deviates quickly from the quantized value when the sample width is less than 1 µm. Our theoretical calculations suggest that the wave function of CEC first decays exponentially and then shows a long tail due to disorder-induced bulk states. Therefore, the deviation from the quantized Hall resistance in narrow QAH samples originates from the interaction between two opposite CECs mediated by disorder-induced bulk states in QAH insulators, consistent with our experimental observations.

13.
Proteome Sci ; 21(1): 1, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597095

RESUMEN

BACKGROUND: Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD: In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT: A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION: NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.

14.
J Integr Neurosci ; 22(2): 33, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992579

RESUMEN

OBJECTIVE: Ginkgolide B (GB) possesses anti-inflammatory, antioxidant, and anti-apoptotic properties against neurotoxicity induced by amyloid beta (Aß), but the potential neuroprotective effects of GB in Alzheimer's therapies remain elusive. We aimed to conduct proteomic analysis of Aß1-42 induced cell injury with GB pretreatment to uncover the underlying pharmacological mechanisms of GB. METHODS: Tandem mass tag (TMT) labeled liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to analyze protein expression in Aß1-42 induced mouse neuroblastoma N2a cells with or without GB pretreatment. Proteins with fold change >1.5 and p < 0.1 from two independent experiments were regarded as differentially expressed proteins (DEPs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the functional annotation information of DEPs. Two key proteins osteopontin (SPP1) and ferritin heavy chain 1 (FTH1) were validated in another three samples using western blot and quantitative real-time PCR. RESULTS: We identified a total of 61 DEPs in GB treated N2a cells, including 42 upregulated and 19 downregulated proteins. Bioinformatic analysis showed that DEPs mainly participated in the regulation of cell death and ferroptosis by down-regulating SPP1 protein and up-regulating FTH1 protein. CONCLUSIONS: Our findings demonstrate that GB treatment provides neuroprotective effects on Aß1-42 induced cell injury, which may be related to the regulation of cell death and ferroptosis. The research puts forward new insights into the potential protein targets of GB in the treatment of Alzheimer's disease (AD).


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Ratones , Animales , Péptidos beta-Amiloides , Cromatografía Liquida , Fármacos Neuroprotectores/farmacología , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
15.
Phys Rev Lett ; 128(21): 216801, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687436

RESUMEN

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.

16.
Nano Lett ; 21(2): 1108-1114, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33404255

RESUMEN

We report compelling evidence of an emergent topological Hall effect (THE) from chiral bubbles in a two-dimensional uniaxial ferromagnet, V-doped Sb2Te3 heterostructure. The sign of THE signal is determined by the net curvature of domain walls in different domain configurations, and the strength of THE signal is correlated with the density of nucleation or pinned bubble domains. The experimental results are in good agreement with the integrated linear transport and Monte Carlo simulations, corroborating the emergent gauge field at chiral magnetic bubbles. Our findings not only reveal a general mechanism of THE in two-dimensional ferromagnets but also pave the way for the creation and manipulation of topological spin textures for spintronic applications.

17.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34468149

RESUMEN

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

18.
Nano Lett ; 21(6): 2544-2550, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710884

RESUMEN

MnBi2Te4, a van der Waals magnet, is an emergent platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer number dependent topological states. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk band gap, corresponding to the concurrent topological phase transition in both even- and odd-layer-number devices. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet.

19.
Nat Mater ; 19(7): 732-737, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32015537

RESUMEN

The quantum anomalous Hall (QAH) effect is a consequence of non-zero Berry curvature in momentum space. The QAH insulator harbours dissipation-free chiral edge states in the absence of an external magnetic field. However, the topological Hall (TH) effect, a hallmark of chiral spin textures, is a consequence of real-space Berry curvature. Here, by inserting a topological insulator (TI) layer between two magnetic TI layers, we realized the concurrence of the TH effect and the QAH effect through electric-field gating. The TH effect is probed by bulk carriers, whereas the QAH effect is characterized by chiral edge states. The appearance of the TH effect in the QAH insulating regime is a consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occurs during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures provides a platform for proof-of-concept dissipationless spin-textured spintronic applications.

20.
Nat Mater ; 19(6): 637-643, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32157191

RESUMEN

Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA