Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Soft Matter ; 9(40): 9608-14, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26029768

RESUMEN

A new concept on bioinspired assembly of functional diblock copolymers, capable of forming different microstructures through nucleobase-induced supramolecular interactions, has been explored. In this paper, a new series of uracil-functionalized poly(ε-caprolactone)-b-(4-vinylbenzyl uracil)s (PCL-b-PVBU) have been prepared which exhibit a high self-complementary ability in solution and solid states owing to the formation of uracil­uracil pairs by induced hierarchical self-assembly. The ordered morphologies of PCL-b-PVBU diblock copolymers changed from a lamellar, hexagonally packed cylinder to a sphere with respect to the content of the hydrogen bond segment. Moreover, we further show that the PCL segment could be easily extracted by enzymatic degradation, leading to a cylinder porous structure of long-range order, which gives a facile method for the fabrication of uracil-functionalized nanotemplates. In addition, bio-complementary PCL-b-PVBU/9-hexadecyladenine (AC16) hierarchical supramolecular complexes formed through strong cooperative hydrogen bonding between the uracil group of PVBU and the adenine group of A-C16. When the mixing ratios of PCL-b-PVBU/AC16 differ from the stoichiometric ratio, these complexes self-assemble into well-ordered lamellar and hexagonal structures; the changing morphology at different AC16 loadings reveals that the molecular structures of the PCL-b-PVBU/AC16 complexes are readily tailored.


Asunto(s)
Adenina/análogos & derivados , Nanoestructuras/química , Poliésteres/química , Polivinilos/química , Uracilo/análogos & derivados , Adenina/química , Uracilo/química
2.
Langmuir ; 27(16): 10197-205, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21678992

RESUMEN

We have investigated the complexation-induced phase behavior of the mixtures of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) and octyl gallate (OG) due to hydrogen bonding in different solvents. The Fourier transform infrared spectroscopic result indicates that the hydrogen-bonding was formed between the P4VP blocks and OG in both THF and DMF, implying the P4VP blocks can bind to OG. For PS-b-P4VP/OG mixture in chloroform, the morphological transitions were induced from the unimer configuration to swollen aggregate and complex-micelles by adding OG. Interestingly, the complex-micelles can lead the formation of the honeycomb structure from chloroform solution. The PS-b-P4VP/OG mixture in THF, behaving an amphiphilic diblock copolymer in solution state, exhibited a series of morphological transitions from sphere, pearl-necklace-liked rod, worm-liked rod, vesicle, to core-shell-corona aggregates by increasing the OG content. In contrast, the PS-b-P4VP/OG mixture in DMF maintained the unimer configuration upon adding OG. Therefore, the complexation-induced morphology of the mixtures of PS-b-P4VP and OG can be mediated by adopting different common solvents to affect the self-assembly behavior.

3.
Macromol Rapid Commun ; 32(12): 927-32, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21542047

RESUMEN

A new polyhedral oligomeric silsesquioxane macromer, octakis[N-(6-aminopyridin-2-yl)undecanamide-10-dimethyl-siloxy]silsesquioxane (POSS-C11-Py), containing eight diaminopyridine arms, is able to self-assemble to form a physically crosslinked polymer-like structure with good mechanical properties (tensile strength = 46.1 MPa, tensile modulus = 0.58 GPa, elongation = 49.3%) through quadruple hydrogen bonding interactions between these arms. POSS-C11-Py is the first organic/inorganic supermolecule possessing polymer-like mechanical properties as a result of self-complementary interactions, providing a potential route toward the design and fabrication of polymer-like supramolecular materials.


Asunto(s)
Compuestos de Organosilicio/química , Polímeros/química , Enlace de Hidrógeno , Ensayo de Materiales , Polímeros/síntesis química , Resistencia a la Tracción
4.
Appl Radiat Isot ; 176: 109762, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34147847

RESUMEN

This study determines the optimum temperature for the alkali fusion process used to effectively separate iodine from solidified radwaste attaining low-level 129I by neutron activation. The alkali fusion temperature was adjusted to 120, 200, and 400 °C to approach the optimum conditions associated with a good statistical distribution of the measured 129I data and high chemical recovery yield. Statistical analysis revealed that the optimum temperature of the alkali fusion process was 200 °C, displaying good central tendency and low variance of the measured 129I data, and the respective chemical recovery yields were higher than other temperatures. The optimum fusion condition provides more reliable scaling factors (129I/137Cs) of radwaste.

5.
Phys Chem Chem Phys ; 12(11): 2582-9, 2010 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-20200734

RESUMEN

We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal (MIM) capacitor comprising a 10 nm-thick high-k thin dielectric HfO(2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfO(2) film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the film surface. After oxygen (O(2)) plasma pretreatment and subsequent annealing at 250 degrees C, the film on the PI substrate exhibited a low leakage current density of 3.64 x 10(-9) A cm(-2) at 5 V and a maximum capacitance density of 10.35 fF microm(-2) at 1 MHz. The as-deposited sol-gel film was completely oxidized when employing O(2) plasma at a relatively low temperature (ca. 250 degrees C), thereby enhancing the electrical performance. We employed X-ray photoelectron spectroscopy (XPS) at both high and low resolution to examine the chemical composition of the film subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy, revealed that O(2) plasma treatment was the most effective process for the complete oxidation of hafnium atoms at low temperature. A study of the insulator properties indicated the excellent bendability of our MIM capacitor; the flexible PI substrate could be bent up to 10(5) times and folded to near 360 degrees without any deterioration in its electrical performance.

6.
Macromol Rapid Commun ; 30(24): 2121-7, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21638505

RESUMEN

This paper describes the miscibility and self-assembly, mediated by hydrogen-bonding interactions, of new block copolymer/nanoparticle blends. The morphologies adopted by the immiscible poly[(ε-caprolactone)-block-(4-vinyl pyridine)] (PCL-b-P4VP) diblock copolymer changes upon increasing the number of competitive hydrogen-bonding interactions after adding increasing amounts of octaphenol polyhedral oligomeric silsesquioxane (OP-POSS). Transmission electron microscopy reveals morphologies that exhibit high degrees of long-range order, such as cylindrical and spherical structures, at relatively low OP-POSS contents, and short-range order or disordered structures at higher OP-POSS contents. Analyses performed using differential scanning calorimetry, wide-angle X-ray diffraction, and FT-IR spectroscopy provide positive evidence that the pyridyl units of the P4VP block are significantly stronger hydrogen-bond acceptors toward the OH group of OP-POSS than are the CO groups of the PCL block, thereby resulting in excluded and confined PCL phases.

7.
J Phys Chem B ; 112(35): 10821-9, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18698814

RESUMEN

In this study, we investigated the miscibility behavior and mechanism of interaction of poly(methyl mechacrylate) (PMMA), poly(vinyl pyrrolidone) PVP, and PMMA- co-PVP blends with octa(phenol)octasilsequioxane (OP-POSS). For the PMMA/OP-POSS binary blend, the value of the association constant ( K A = 29) was smaller than that in the poly(vinyl phenol) (PVPh)/PMMA ( K A = 37.4) and ethyl phenol (EPh)/PMMA ( K A = 101) blend systems, implying that the phenol groups of the OP-POSS units in the PMMA/OP-POSS blends interacted to a lesser degree with the CO groups of PMMA than they did in the other two systems. In addition, the ionic conductivity of a LiClO4/PMMA- co-PVP polymer electrolyte was increased after blending with OP-POSS.

8.
J Phys Chem B ; 111(13): 3404-10, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17388483

RESUMEN

We discovered that poly(vinylphenol) (PVPh) possesses an extremely low surface energy (15.7 mJ/m2) after a simple thermal treatment procedure, even lower than that of poly(tetrafluoroethylene) (22.0 mJ/m2) calculated on the basis of the two-liquid geometric method. Infrared analyses indicate that the intermolecular hydrogen bonding of PVPh decreases by converting the hydroxyl group into a free hydroxyl and increasing intramolecular hydrogen bonding after thermal treatment. PVPh results in a lower surface energy because of the decrease of intermolecular hydrogen bonding between hydroxyl groups. In addition, we also compared surface energies of PVPh-co-PS (polystyrene) copolymers (random and block) and their corresponding blends. Again, these random copolymers possess a lower fraction of intermolecular hydrogen bonding and surface energy than the corresponding block copolymers or blends after similar thermal treatment. This finding provides a unique and easy method to prepare a low-surface-energy material through a simple thermal treatment procedure without using fluoro polymers or silicones.

9.
Nanoscale ; 8(2): 723-8, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26660032

RESUMEN

A novel urea-cytosine end-capped polypropylene glycol (UrCy-PPG) can self-assemble into a long-range ordered lamellar microstructure on the surface of graphene, due to the strong specific interactions between UrCy-PPG and graphene. In addition, the graphene composite produced exhibits a high conductivity (∼1093 S m(-1)) with a dramatic thermo-responsive ON/OFF resistance-switching behavior (10 consecutive cycles).

10.
Acta Biomater ; 33: 194-202, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26796210

RESUMEN

The novel concept of modifying and enhancing the properties of existing functional micelles through self-complementary interactions has significant potential. In this study, a practical approach to living polymerization of functionalized thermoresponsive monomers enabled the incorporation of self-constituted multiple hydrogen bonded groups into micelles that have potential as supramolecular drug-delivery systems. Phase transitions and morphological studies in aqueous solution showed that the microstructure can be controlled to achieve well-defined vesicle-like micelles with respect to the strength of the hydrogen bond segment. Thus, the resulting micelles have a very low critical micellization concentration and very high loading capacity (16.1%), making the loading process extremely stable and efficient. Incorporation of the anticancer drug doxorubicin (DOX) affected the micellization process in aqueous solution and enabled fine-tuning of drug loading and precise control of drug release rate with excellent sensitivity. Release studies in vitro showed that DOX-loaded micelles exerted dose-dependent cytotoxicity against human liver carcinoma (HepG2) cells at the physiological temperature of 37°C. In addition, DOX-loaded micelles were efficiently endocytosed by the cancer cells, which may enable the micelles to serve as suitable vehicles for effective delivery of anticancer drugs to primary tumors and metastatic disease. This newly developed material may provide a potential route towards next-generation drug delivery vehicles. STATEMENT OF SIGNIFICANCE: A breakthrough innovation in water-based thermo-responsive polymers has enabled significant progress in developing smart stimuli-responsive nanocarriers by generating novel "supramolecular polymeric micelles" via self-complementary hydrogen-bonding interactions. These newly developed micelles exhibit extremely high micellar stability and drug loading capacity (up to 16%), excellent thermo-responsive behavior and precise control of drug release rate due to hydrogen-bond-induced physical cross-linking. In addition, doxorubicin-loaded micelles were efficiently endocytosed by the cancer cells, which allows them to serve as suitable vehicles for effective delivery of anticancer drugs to primary tumors and metastatic disease. Thus, this work provides a potential route for the development of next generation multifunctional nanocarriers that have improved safety and to increase the therapeutic efficacy of anticancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Materiales Biocompatibles/farmacología , Células HEK293 , Células Hep G2 , Humanos , Micelas , Polímeros/síntesis química , Dispersión de Radiación , Temperatura
11.
ACS Macro Lett ; 4(10): 1184-1188, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35614803

RESUMEN

A breakthrough innovation in water-based polymeric nanoparticles has enabled significant progress in mimicking the folding of natural proteins by generating novel "single-chain polymeric nanoparticles" (SCPNs) via supramolecular interactions. In this study, a practical approach to the living polymerization of functionalized oligo(ethylene glycol) methacrylate monomers allows the incorporation of self-constituted multiple hydrogen-bonded groups into physically cross-linked polymer networks, which enables the formation of highly functionalized SCPNs in an aqueous environment. The newly developed materials are particularly attractive from a practical point of view since they have a very low critical micellization concentration and uniform particle diameters of ca. 25 nm, making them extremely stable under dilute conditions. Concentration-dependent experiments showed that SCPNs formed at polymer concentrations up to 40 mg/mL with no significant change in morphology observed. Moreover, the formed SCPNs had a very high stability in an aqueous solution containing surfactant, suggesting potential for a wide variety of applications as a promising candidate nanocarrier for bioimaging, controlled release, and drug delivery systems.

12.
Chem Commun (Camb) ; 51(4): 672-5, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25415758

RESUMEN

A nucleobase-assembled supramolecular nanofiber is capable of forming network-like polymeric clusters through complementary hydrogen-bonding interactions. It behaves as an effective chromophore that greatly enhances the light emission efficiency of fluorescent fibers, reaching up to three times higher efficiency than the control samples.

13.
Biosens Bioelectron ; 54: 35-41, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240166

RESUMEN

In this study we fabricated a nanopillar array of silicon oxide, involving very-large-scale integration (VLSI) and reactive ion etching (RIE), as two-dimensional periodic relief gratings (2DPRGs) on Si surfaces. Thiolated oligonucleotide was successively immobilized on the thiol functionalized surfaces of 2DPRGs by disulfide bond as an optical probe to detect a human genomic DNA (hgDNA584), related to breast cancer recurrence after surgery, from a biological specimen. The oligonucleotide-bound 2DPRG alone produces insignificant structure change, but upon hybridization with hgDNA584 leads to a dramatic change of the pillar scale due to hgDNA584 filling inside the 2DPRG layers. The performance of the sensor was evaluated by capturing hgDNA584 on the oligonucleotide-bound 2DPRGs and measuring the effective refractive index (neff), resulting of color change from pure blue to red, observed by naked eyes along an incident angle of 20-30°. The surface-bound 2DPRG based assay with the chemoresponsive diffraction grating signal transduction scheme results in an experimentally simple DNA detection protocol, displaying attributes of both detection methodologies: the high sensitivity and selectivity afforded by 2DPRG probes and the experimental simplicity, and miniaturization potential provided by the diffraction-based sensing technology.


Asunto(s)
Técnicas Biosensibles/instrumentación , Neoplasias de la Mama/diagnóstico , ADN/análisis , Recurrencia Local de Neoplasia/diagnóstico , Diseño de Equipo , Femenino , Humanos , Hibridación de Ácido Nucleico , Refractometría , Sensibilidad y Especificidad
14.
Environ Sci Process Impacts ; 15(12): 2321-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24190422

RESUMEN

Wet deposition is an important atmospheric mercury (Hg) pathway between air and terrestrial ecosystems. It is measured at numerous locations in the United States (U. S.) as part of the Mercury Deposition Network (MDN). The annual Hg wet deposition flux in 2009 at four locations in the northeastern U. S. (MDN sites MD08, VT99, NY20, and NY43) ranged from 6.4 to 13.4 µg per m(2) year which is higher than modeled reactive Hg (RM) dry deposition for this region. The highest ambient RM concentrations were seen at MD08, which is closest to significant anthropogenic sources; however, the volume-weighted mean Hg concentrations in precipitation were similar at these four sites. Mass based scavenging ratios (SC) of RM ranged from 1700 to 4500. Differences in SCs were likely a result of differences in meteorological conditions, the forms of RM in the atmosphere, vertical concentration variations, and measurement uncertainties, including precipitation depth and RM concentrations. RM SCs were higher than those reported for other soluble species. Multiple linear regression suggests that gaseous oxidized Hg is responsible for the majority of the scavenged RM.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación Ambiental/análisis , Gases/análisis , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Maryland , New York , Vermont
15.
Adv Mater ; 24(14): 1894-8, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22415883

RESUMEN

A new DNA-mimetic π-conjugated polymer poly(triphenylamine-carbazole) (PTC-U) has been prepared which exhibits high thermal stability, non-corrosion, excellent hole injection and electron-blocking abilities in the solid state owing to the uracil induced physical cross-linking. In addition, a trilayer device with PTC-U as a hole injection/transport layer is approximately 1.6 times higher than that of the commercial product PEDOT:PSS-based devices.


Asunto(s)
Polímeros/química , Materiales Biomiméticos/química , ADN/química , Mediciones Luminiscentes/instrumentación , Poliestirenos/química , Tiofenos/química
16.
ACS Appl Mater Interfaces ; 4(10): 5650-61, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23016596

RESUMEN

In this study, we synthesized core/shell structures comprising monodisperse 3-µm SiO(2) microspheres and gold nanoparticles (AuNPs, ca. 6.7 nm) as the core and shell components, respectively. Using a layer-by-layer cross-linking process with a dithiol cross-linking agent, we prepared low-permittivity AuNP-encapsulated high-permittivity SiO(2) core/shell microspheres with variable AuNP shell thicknesses. The dispersivity of the microspheres in solution was enhanced after grafting poly(ethylene glycol) monomethyl ether thiol (PEG-SH) onto the AuNP layer on the SiO(2) microspheres. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed sesame ball-like structures for these SiO(2)@AuNP@PEG microspheres. We encapsulated aqueous dispersions of these SiO(2)@AuNP microspheres into sandwich structured displays (SSDs) to investigate their electrorheological properties, observing reversibly electroresponsive transmittance that is ideally suited for display applications. Increasing the thickness of the AuNP layer dramatically enhanced the stringing behavior of the SiO(2) microspheres, resulting in increased transmittance of the SSD. The response time of the electroresponsive electrorheological fluids also decreased significantly after modifying the SiO(2) with the AuNP layers. The effective permittivities of these composites could be predicted from the real (έ) and imaginary (έ́) parts of the Clausius-Mossotti formalism.

17.
J Colloid Interface Sci ; 368(1): 663-6, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22196349

RESUMEN

In this study, the surface of π-conjugated polymer, poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), was successfully modified with the sulfate anion (SO(4-)) groups by the confined photo-catalytic oxidation (CPO). After the surface modification, the water contact angle of MEH-PPV is changed from 95.5° to 82.1° without influence on its optical properties (based on the UV and PL spectra), and the water droplet can be absorbed on the modified MEH-PPV surface without sliding even at substrate tilt angles of 90° and 180°. The CPO on the MEH-PPV surface is able to further expand the use of MEH-PPV for applications. In addition, the water transport test indicates that the modified MEH-PPV can be a candidate for transporting water droplet.

18.
ACS Macro Lett ; 1(1): 159-162, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578494

RESUMEN

In this study, we used electrospinning to fabricate nucleobase-functionalized and photo-cross-linkable poly[1-(4-vinylbenzyl uracil)] (PVBU) nanofibers. PVBU of high-molecular-weight (Mn > 250 550 g/mol) possessed a high thermal stability and sufficient chain entanglement to produce uniform fibers without forming beads. These uracil-functionalized nanofibers were further photo-cross-linked through exposure to UV light at a wavelength of 254 nm. After immersing in N,N-dimethylacetamide, the pristine PVBU fibers dissolved, while the cross-linked PVBU fibers maintained their shape; thus, the cross-linked PVBU nanofibers exhibited good dimensional stability and improved solvent resistance.

19.
ACS Appl Mater Interfaces ; 4(6): 3261-9, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22667761

RESUMEN

An organic-organic blend thin film has been synthesized through the solution deposition of a triblock copolymer (Pluronic P123, EO20-PO70-EO20) and polystyrene (PS), which is called P123-PS for the blend film whose precursor solution was obtained with organic additives. In addition to having excellent insulating properties, these materials have satisfied other stringent requirements for an optimal flexible device: low-temperature fabrication, nontoxic, surface free of pinhole defect, compatibility with organic semiconductors, and mechanical flexibility. Atomic force microscope measurements revealed that the optimized P123-PS blend film was uniform, crack-free, and highly resistant to moisture absorption on polyimide (PI) substrate. The film was well-adhered to the flexible Au/Cr/PI substrate for device application as a stable insulator, which was likely due to the strong molecular assembly that includes both hydrophilic and hydrophobic effects from the high molecular weights. The contact angle measurements for the P123-PS surface indicated that the system had a good hydrophobic surface with a total surface free energy of approximately 19.6 mJ m(-2). The dielectric properties of P123-PS were characterized in a cross-linked metal-insulator-metal structured device on the PI substrate by leakage current, capacitance, and dielectric constant measurements. The P123-PS film showed an average low leakage current density value of approximately 10(-10) A cm(-2) at 5-10 MV cm(-1) and large capacitance of 88.2 nF cm(-2) at 1 MHz, and the calculated dielectric constant was 2.7. In addition, we demonstrated an organic thin-film transistor (OTFT) device on a flexible PI substrate using the P123-PS as the gate dielectric layer and pentacene as the channel layer. The OTFT showed good saturation mobility (0.16 cm(2) V(-1) s(-1)) and an on-to-off current ratio of 5 × 10(5). The OTFT should operate under bending conditions; therefore flexibility tests for two types of bending modes (tensile and compressive) were also performed successfully.

20.
J Colloid Interface Sci ; 367(1): 40-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22104277

RESUMEN

In this study, we partially grafted geminal silanol groups in the protecting organic shells on the surfaces of gold nanoparticles (AuNPs) and then assembled the alkyl-AuNP-Si(OH)(4) particles onto the surfaces of silicon (Si) wafers. The density of assembled AuNPs on the Si surface was adjusted by varying the geminal silanol group content on the AuNP surface; at its optimal content, it approached the high assembly density (0.0254 particles/nm(2)) of an AuNP assembled monolayer. Using reactive-ion etching (RIE) with the templates as masks, we transferred the patterned AuNP assemblies to form large-area, size-tunable, Si nanopillar arrays, the assembly density of which was controlled by the dimensions of the AuNPs. Using this colloidal lithography (CL) process, we could generate Si nanopillars having sub-10-nm diameters and high aspect ratios. The water contact angles of the high-aspect-ratio Si nanopillars approached 150°. We used another fabrication process, involving electron beam lithography and oxygen plasma treatment, to generate hydrophilic 200-nm-resolution line patterns on a Si surface to assemble the AuNPs into 200-nm-resolution dense lines for use as an etching mask. Subsequent CL provided a patterned Si nanopillar array having a feature size of 200 nm on the Si surface. Using this approach, it was possible to pattern sub-10-nm Si nanopillar arrays having densities as high as 0.0232 nm(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA