Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 71(1): 73-88.e5, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008320

RESUMEN

Interphase chromatin is organized into topologically associating domains (TADs). Within TADs, chromatin looping interactions are formed between DNA regulatory elements, but their functional importance for the establishment of the 3D genome organization and gene regulation during development is unclear. Using high-resolution Hi-C experiments, we analyze higher order 3D chromatin organization during Drosophila embryogenesis and identify active and repressive chromatin loops that are established with different kinetics and depend on distinct factors: Zelda-dependent active loops are formed before the midblastula transition between transcribed genes over long distances. Repressive loops within polycomb domains are formed after the midblastula transition between polycomb response elements by the action of GAGA factor and polycomb proteins. Perturbation of PRE function by CRISPR/Cas9 genome engineering affects polycomb domain formation and destabilizes polycomb-mediated silencing. Preventing loop formation without removal of polycomb components also decreases silencing efficiency, suggesting that chromatin architecture can play instructive roles in gene regulation during development. VIDEO ABSTRACT.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Silenciador del Gen , Proteínas del Grupo Polycomb/metabolismo , Animales , Sistemas CRISPR-Cas , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas del Grupo Polycomb/genética
2.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996996

RESUMEN

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica Ectópica , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bacterias/metabolismo , Proteínas de Unión al ADN/genética
3.
BMC Genomics ; 25(1): 842, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251911

RESUMEN

BACKGROUND: DNA metabarcoding applies high-throughput sequencing approaches to generate numerous DNA barcodes from mixed sample pools for mass species identification and community characterisation. To date, however, most metabarcoding studies employ second-generation sequencing platforms like Illumina, which are limited by short read lengths and longer turnaround times. While third-generation platforms such as the MinION (Oxford Nanopore Technologies) can sequence longer reads and even in real-time, application of these platforms for metabarcoding has remained limited possibly due to the relatively high read error rates as well as the paucity of specialised software for processing such reads. RESULTS: We show that this is no longer the case by performing nanopore-based, cytochrome c oxidase subunit I (COI) metabarcoding on 34 zooplankton bulk samples, and benchmarking the results against conventional Illumina MiSeq sequencing. Nanopore R10.3 sequencing chemistry and super accurate (SUP) basecalling model reduced raw read error rates to ~ 4%, and consensus calling with amplicon_sorter (without further error correction) generated metabarcodes that were ≤ 1% erroneous. Although Illumina recovered a higher number of molecular operational taxonomic units (MOTUs) than nanopore sequencing (589 vs. 471), we found no significant differences in the zooplankton communities inferred between the sequencing platforms. Importantly, 406 of 444 (91.4%) shared MOTUs between Illumina and nanopore were also found to be free of indel errors, and 85% of the zooplankton richness could be recovered after just 12-15 h of sequencing. CONCLUSION: Our results demonstrate that nanopore sequencing can generate metabarcodes with Illumina-like accuracy, and we are the first study to show that nanopore metabarcodes are almost always indel-free. We also show that nanopore metabarcoding is viable for characterising species-rich communities rapidly, and that the same ecological conclusions can be obtained regardless of the sequencing platform used. Collectively, our study inspires confidence in nanopore sequencing and paves the way for greater utilisation of nanopore technology in various metabarcoding applications.


Asunto(s)
Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Nanoporos , Código de Barras del ADN Taxonómico/métodos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación INDEL , Secuenciación de Nanoporos/métodos , Complejo IV de Transporte de Electrones/genética , Zooplancton/genética , Zooplancton/clasificación , Análisis de Secuencia de ADN/métodos
4.
Small ; : e2404954, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39314023

RESUMEN

Heterostructure engineering offers a powerful approach to creating innovative electrocatalysts. By combining different materials, it can achieve synergistic effects that enhance both charge storage and electrocatalytic activity. In this work, it is capitalized on this concept by designing a 1D/3D CoWO4(OH)2·H2O/molybdenum disulfide (CTH/MoS2) heterostructure. It is achieved this by in situ depositing 3D MoS2 nanoflowers on 1D CTH nanorods. To explore the impact of precursor choice, various sulfur (S) sources is investigated. Interestingly, the S precursor influenced the dimensionality of the MoS2 component. For example, L-cysteine (L-cys), and glutathione (GSH) resulted in 0D morphologies, thiourea (TU) led to a 2D structure, and thioacetamide (TAA) yielded a desirable 3D architecture. Notably, the 1D/3D CTH/MoS2-TAA heterostructure exhibited exceptional performance in both supercapacitors (SCs) and quantum dot-sensitized solar cells (QDSSCs). This achievement can be attributed to several factors: the synergetic effect between 1D CTH and 3D MoS2, improved accessibility due to the multi-dimensional structure, and a tailored electronic structure facilitated by the Mott-Schottky (M-S) interaction arising from the different material Fermi levels. This interaction further enhances conductivity, ultimately leading to the observed high specific capacity in SCs (154.44 mAh g-1 at 3 mA cm-2) and remarkable photovoltaic efficiency in QDSSCs (6.48%).

5.
J Virol ; 97(10): e0100623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37732785

RESUMEN

IMPORTANCE: Zika virus (ZIKV) infection in pregnant women during the third trimester can cause neurodevelopmental delays and cryptorchidism in children without microcephaly. However, the consequences of congenital ZIKV infection on fertility in these children remain unclear. Here, using an immunocompetent mouse model, we reveal that congenital ZIKV infection can cause hormonal disorders of the hypothalamic-pituitary-gonadal axis, leading to reduced fertility and decreased sexual preference. Our study has for the first time linked the hypothalamus to the reproductive system and social behaviors after ZIKV infection. Although the extent to which these observations in mice translate to humans remains unclear, these findings did suggest that the reproductive health and hormone levels of ZIKV-exposed children should receive more attention to improve their living quality.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Embarazo , Fertilidad , Hormonas , Eje Hipotálamico-Pituitario-Gonadal , Microcefalia , Complicaciones Infecciosas del Embarazo/virología , Virus Zika/fisiología , Infección por el Virus Zika/patología
6.
Mol Pharm ; 21(2): 801-812, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38217878

RESUMEN

Cancer is a significant global public health concern, ranking as the leading cause of mortality worldwide. This study thoroughly explores boron-doped carbon dots (B-CDs) through a simple/rapid microwave-assisted approach and their versatile applications in cancer therapy. The result was highly uniform particles with an average diameter of approximately 4 nm. B-CDs exhibited notable properties, including strong fluorescence with a quantum yield of 33%. Colloid stability tests revealed their robustness within a pH range of 6-12, NaCl concentrations up to 0.5 M, and temperatures ranging from 30 to 60 °C. The study also delved into the kinetics of naproxen release from B-CDs as a drug delivery system. The loading efficacy of naproxen exceeded 55.56%. Under varying pH conditions, the release of naproxen from B-CDs conformed to the Peppas-Sahlin model, demonstrating the potential of Naproxen-loaded CDs for cancer drug delivery. In vitro cytotoxicity assessments, conducted using the CCK-8 Assay and flow cytometry, consistently indicated low toxicity with average cell viability exceeding 80%. An in vivo toxicity test on female mice administered 20 mg/kg of B-CDs for 31 days revealed reversible histological changes in the liver and kidneys, while the pancreas remained unaffected. Importantly, B-CDs did not impact the mice's physical behavior, body weight, or survival. In vivo experiments targeting benzo(a)pyrene-induced fibrosarcoma demonstrated the efficacy of B-CDs as naproxen carriers in the treatment of cancer. This in vivo study provides a thorough comprehension of B-CDs synthesis and toxicity and their potential applications in cancer therapy and drug delivery systems.


Asunto(s)
Antineoplásicos , Puntos Cuánticos , Femenino , Animales , Ratones , Puntos Cuánticos/química , Boro , Naproxeno/uso terapéutico , Carbono/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
7.
Environ Sci Technol ; 58(37): 16410-16420, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236253

RESUMEN

Environmental DNA (eDNA) analysis is a powerful tool for studying biodiversity in forests and tree canopies. However, collecting representative eDNA samples from these high and complex environments remains challenging. Traditional methods, such as surface swabbing or tree rolling, are labor-intensive and require significant effort to achieve adequate coverage. This study proposes a novel approach for unmanned aerial vehicles (UAVs) to collect eDNA within tree canopies by using a surface swabbing technique. The method involves lowering a probe from a hovering UAV into the canopy and collecting eDNA as it descends and ascends through branches and leaves. To achieve this, a custom-designed robotic system was developed featuring a winch and a probe for eDNA collection. The design of the probe was optimized, and a control logic for the winch was developed to reduce the risk of entanglement while ensuring sufficient interaction force to facilitate transfer of eDNA onto the probe. The effectiveness of this method was demonstrated during the XPRIZE Rainforest Semi-Finals as 10 eDNA samples were collected from the rainforest canopy, and a total of 152 molecular operational taxonomic units (MOTUs) were identified using eDNA metabarcoding. We further investigate how the number of probe interactions with vegetation, the penetration depth, and the sampling duration influence the DNA concentration and community composition of the samples.


Asunto(s)
ADN Ambiental , Árboles , Biodiversidad , Dispositivos Aéreos No Tripulados
8.
BMC Emerg Med ; 24(1): 87, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764022

RESUMEN

BACKGROUND: Computed tomography (CT) is frequently performed in the patients who admitted to the emergency department (ED), discharged but returned to ED within 72 h. It is unknown whether the main complaints of patients assist physicians to use CT effectively. This study aimed to find the association between chief complaints and the CT results. METHODS: This three-year retrospective cohort study was conducted in the ED of a tertiary medical center. Adult patients who returned to the ED after the index visit were included from 2019 to 2021. Demographics, pre-existing diseases, chief complaints, and CT region were recorded by independent ED physicians. A logistic regression model with an odds ratio (OR) and 95% confidence interval (CI) was used to determine the relationship between chief complaints and positive CT results. RESULTS: In total, 7,699 patients revisited ED after the index visit; 1,202 (15.6%) received CT. The top chief complaints in patients who received CT were abdominal pain, dizziness, and muscle weakness. Patients with abdominal pain or gastrointestinal symptoms had a significantly higher rate of positive abdominopelvic CT than those without it (OR 2.83, 95% CI 1.98-4.05, p < 0.001), while the central nervous system and cardiopulmonary chief complaints were not associated (or negatively associated) with new positive CT findings. CONCLUSION: Chief complaints of patients on revisit to the ED are associated with different yields of new findings when CT scans of the chest, abdomen and head are performed. Physicians should consider these differential likelihoods of new positive findings based on these data.


Asunto(s)
Dolor Abdominal , Servicio de Urgencia en Hospital , Tomografía Computarizada por Rayos X , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Dolor Abdominal/diagnóstico por imagen , Dolor Abdominal/etiología , Anciano , Mareo , Enfermedades Gastrointestinales/diagnóstico por imagen
9.
J Fish Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228134

RESUMEN

Identification of fish larvae based on morphology is typically limited to higher taxonomic ranks (e.g., family or order), as larvae possess few morphological diagnostic characters for precise discrimination to species. When many samples are presented at any one time, the use of morphology to identify such specimens can be laborious and time-consuming. Using a reverse workflow for specimen sorting and identification leveraging high-throughput DNA sequencing, thousands of fish larvae can be DNA barcoded and sorted into molecular operational taxonomic units (mOTUs) in a single sequencing run with the nanopore sequencing technology (e.g., MinION). This process reduces the time and financial costs of morphology-based sorting and instead deploys experienced taxonomists for species taxonomic work where they are needed most. In this study, a total of 3022 fish larval specimens from plankton tows across four sites in Singapore were collected and sorted based on this workflow. Eye tissue from individual samples was used for DNA extraction and sequencing of cytochrome c oxidase subunit I. We generated a total of 2746 barcodes after quality filtering (90.9% barcoding success), identified 2067 DNA barcodes (75.3% identification success), and delimited 256 mOTUs (146 genera, 52 families). Our analyses identified specific challenges to species assignment, such as the potential misidentification of publicly available sequences used as reference barcodes. We highlighted how the conservative application and comparison of a local sequence database can help resolve identification conflicts. Overall, this proposed approach enables and expedites taxonomic identification of fish larvae, contributing to the enhancement of reference barcode databases and potentially better understanding of fish connectivity.

10.
Pain Pract ; 24(1): 82-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37615236

RESUMEN

PURPOSE: Accurate predictions of postoperative pain intensity are necessary for customizing analgesia plans. Insomnia is a risk factor for severe postoperative pain. Moreover, heart rate variability (HRV) can provide information on the sympathetic-parasympathetic balance in response to noxious stimuli. We developed a prediction model that uses the insomnia severity index (ISI), HRV, and other demographic factors to predict the odds of higher postoperative pain. METHODS: We recruited gynecological surgery patients classified as American Society of Anesthesiologists class 1-3. An ISI questionnaire was completed 1 day before surgery. HRV was calculated offline using intraoperative electrocardiogram data. Pain severity at the postanesthesia care unit (PACU) was assessed with the 0-10 numerical rating scale (NRS). The primary outcome was the model's predictive ability for moderate-to-severe postoperative pain. The secondary outcome was the relationship between individual risk factors and opioid consumption in the PACU. RESULTS: Our study enrolled 169 women. Higher ISI scores (p = 0.001), higher parasympathetic activity (rMSSD, pNN50, HF; p < 0.001, p < 0.001, p < 0.001), loss of fractal dynamics (SD2, alpha 1; p = 0.012, p = 0.039) in HRV analysis before the end of surgery were associated with higher NRS scores, while laparoscopic surgery (p = 0.031) was associated with lower NRS scores. We constructed a multiple logistic model (area under the curve = 0.852) to predict higher NRS scores at PACU arrival. The five selected predictors were age (OR: 0.94; p = 0.020), ISI score (OR: 1.14; p = 0.002), surgery type (laparoscopic or open; OR: 0.12; p < 0.001), total power (OR: 2.02; p < 0.001), and alpha 1 (OR: 0.03; p < 0.001). CONCLUSION: We employed a multiple logistic regression model to determine the likelihood of moderate-to-severe postoperative pain upon arrival at the PACU. Physicians could personalize analgesic regimens based on a deeper comprehension of the factors that contribute to postoperative pain.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Calidad del Sueño , Humanos , Femenino , Frecuencia Cardíaca/fisiología , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Analgésicos , Analgésicos Opioides/uso terapéutico , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/tratamiento farmacológico
11.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545814

RESUMEN

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

12.
J Am Chem Soc ; 145(42): 23167-23175, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37820308

RESUMEN

The precise tuning of components, spatial orientations, or connection modes for redox units is vital for gaining deep insight into efficient artificial photosynthetic overall reaction, yet it is still hard achieve for heterojunction photocatalysts. Here, we have developed a series of redox molecular junction covalent organic frameworks (COFs) (M-TTCOF-Zn, M = Bi, Tri, and Tetra) for artificial photosynthetic overall reaction. The covalent connection between TAPP-Zn and multidentate TTF endows various connection modes between water photo-oxidation (multidentate TTF) and CO2 photoreduction (TAPP-Zn) centers that can serve as desired platforms to study the possible interactions between redox centers. Notably, Bi-TTCOF-Zn exhibits a high CO production rate of 11.56 µmol g-1 h-1 (selectivity, ∼100%), which is more than 2 and 6 times higher than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn, respectively. As revealed by theoretical calculations, Bi-TTCOF-Zn facilitates a more uniform distribution of energy-level orbitals, faster charge transfer, and stronger *OH adsorption/stabilization ability than those of Tri-TTCOF-Zn and Tetra-TTCOF-Zn.

13.
Curr Issues Mol Biol ; 45(6): 4908-4922, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37367061

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer with a high mortality rate worldwide. Although gallic acid and hesperidin exert anticancer activity, synergistic effects of gallic acid and hesperidin against CRC remain elusive. This study aims to investigate the therapeutic mechanism of a novel combination of gallic acid and hesperidin against CRC cell growth, including cell viability, cell-cycle-associated proteins, spheroid formation, and stemness. METHODS: Gallic acid and hesperidin derived from Hakka pomelo tea (HPT) were detected by colorimetric methods and high-performance liquid chromatography using ethyl acetate as an extraction medium. CRC cell lines (HT-29 and HCT-116) treated with the combined extract were investigated in our study for cell viability (trypan blue or soft agar colony formation assay), cell cycle (propidium iodide staining), cell-cycle-associated proteins (immunoblotting), and stem cell markers (immunohistochemistry staining). RESULTS: Compared with other extraction methods, HPT extraction using an ethyl acetate medium exerts the most potent effect on inhibiting HT-29 cell growth in a dose-dependent manner. Furthermore, the treatment with combined extract had a higher inhibitory effect on CRC cell viability than gallic acid or hesperidin alone. The underlying mechanism was involved in G1-phase arrest and Cip1/p21 upregulation that could attenuate HCT-116 cell proliferation (Ki-67), stemness (CD-133), and spheroid growth in a 3D formation assay mimicking in vivo tumorigenesis. CONCLUSION: Gallic acid and hesperidin exert synergistic effects on cell growth, spheroids, and stemness of CRC and may serve as a potential chemopreventive agent. Further testing for the safety and effectiveness of the combined extract in large-scale randomized trials is required.

14.
Rheumatology (Oxford) ; 62(3): 1087-1096, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946529

RESUMEN

OBJECTIVE: The most used drug for the treatment of rheumatoid arthritis (RA) remains methotrexate (MTX). Unfortunately, up to 50% of patients do not achieve a clinically adequate outcome. Here we study whether the gut microbiota patterns can aid in the prediction of MTX efficacy for RA. METHOD: To dissect gut microbiome profiles of RA patients (n = 145), 16S rRNA gene sequencing was performed. Dirichlet multinomial mixture (DMM) clustering was used to identify enterotypes at genus level. The relationships between enterotypes and clinical measures (such as lymphocyte subsets and cytokines detected by flow cytometry) were explored. Then, enterotype stability was evaluated by the stratification of the RA patient cohort (n = 66) in Shanghai, China, using the same method. Finally, the enterotype-based gut microbial human index classifier was applied to another independent RA patient cohort (n = 27) to identify the factors associated with MTX clinical response. RESULTS: Our analysis revealed that the RA patients always displayed two different dysbiotic microbiota patterns: RA E1 comprised predominantly Prevotella and RA E2 comprised predominantly Bacteroides. Among all of the lymphocyte subsets and cytokines, only the number of CD8+ T cells showed a significant difference between RA E1 and RA E2. These results were validated in the RA patient cohort in Shanghai, China. Significant associations of RA E1 with clinical response to subsequent MTX treatment were confirmed by another independent RA patient cohort. CONCLUSION: Together, the enterotype-based gut microbial human index (EGMI) classifier was useful to precisely and effectively identify enterotypes of individual RA patients, which could effectively evaluate MTX clinical responses.


Asunto(s)
Artritis Reumatoide , Microbioma Gastrointestinal , Humanos , Metotrexato/uso terapéutico , ARN Ribosómico 16S/genética , China , Artritis Reumatoide/tratamiento farmacológico , Citocinas
15.
Mol Ecol ; 32(23): 6474-6488, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35852023

RESUMEN

Synchronous multispecific coral spawning generally occurs annually and forms an integral part of the coral life cycle. Apart from spawning times and species participation, however, much else remains unknown. Here, we applied environmental DNA (eDNA) metabarcoding to study two tropical reef sites of contrasting coral cover before, during and after coral spawning. Using coral-ITS2 and vertebrate-12S markers, we evaluated eDNA as an alternative monitoring tool by assessing its capabilities in detecting spawning species and tracking relative abundances of coral and fish eDNA. Over 3 years, elevated eDNA coral signals during the event (proportional read increase of up to five-fold) were observed, detecting a total of 38 coral and 133 fish species with all but one of the coral species visually observed to be spawning. This is also the first demonstration that eDNA metabarcoding can be used to infer the diurnal partitioning of night- and day-time spawning, spawning in coral species overlooked by visual surveys, and the associated changes in fish trophic structures as an indicator of spawning events. Our study paves the way for applied quantitative eDNA metabarcoding approaches to better study ephemeral and important biological events.


Asunto(s)
Antozoos , ADN Ambiental , Animales , Antozoos/genética , Código de Barras del ADN Taxonómico , Peces/genética , Monitoreo del Ambiente , Biodiversidad , Arrecifes de Coral , Ecosistema
16.
Mol Ecol ; 32(23): 6223-6242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35716352

RESUMEN

Coral reefs are among the richest marine ecosystems on Earth, but there remains much diversity hidden within cavities of complex reef structures awaiting discovery. While the abundance of corals and other macroinvertebrates are known to influence the diversity of other reef-associated organisms, much remains unknown on the drivers of cryptobenthic diversity. A combination of standardized sampling with 12 units of the Autonomous Reef Monitoring Structure (ARMS) and high-throughput sequencing was utilized to uncover reef cryptobiome diversity across the equatorial reefs in Singapore. DNA barcoding and metabarcoding of mitochondrial cytochrome c oxidase subunit I, nuclear 18S and bacterial 16S rRNA genes revealed the taxonomic composition of the reef cryptobiome, comprising 15,356 microbial ASVs from over 50 bacterial phyla, and 971 MOTUs across 15 metazoan and 19 non-metazoan eukaryote phyla. Environmental factors across different sites were tested for relationships with ARMS diversity. Differences among reefs in diversity patterns of metazoans and other eukaryotes, but not microbial communities, were associated with biotic (coral cover) and abiotic (distance, temperature and sediment) environmental variables. In particular, ARMS deployed at reefs with higher coral cover had greater metazoan diversity and encrusting plate cover, with larger-sized non-coral invertebrates influencing spatial patterns among sites. Our study showed that DNA barcoding and metabarcoding of ARMS constitute a valuable tool for quantifying cryptobenthic diversity patterns and can provide critical information for the effective management of coral reef ecosystems.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Ecosistema , ARN Ribosómico 16S/genética , Antozoos/genética , ADN , Biodiversidad
17.
J Exp Bot ; 74(21): 6790-6803, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37610886

RESUMEN

It is often expected that Zn decreases Cd accumulation in plants due to competition for the same transporters. Here, we found that increasing Zn supply markedly increased the root-to-shoot translocation of Cd in rice. RNA sequencing showed that high Zn up-regulated expression of genes involved in glutathione biosynthesis and metabolism and the Zn/Cd transporter gene OsHMA2, but down-regulated expression of genes related to Zn uptake. Knockout of the iron or Zn transporter genes OsIRT1, OsIRT2, or OsZIP9 did not affect the Zn promotional effect on Cd translocation. Knockout of the manganese/Cd transporter gene OsNRAMP5 greatly reduced Cd uptake but did not affect the Zn promotional effect. Variation in the tonoplast transporter gene OsHMA3 affected Cd translocation but did not change the Zn promotional effect. Knockout of the Zn/Cd transporter gene OsHMA2 not only decreased Cd and Zn translocation, but also abolished the Zn promotional effect. Increased expression of OsHMA2 under high Zn conditions supports the hypothesis that this transporter participates in the promotional effect of Zn on Cd translocation. The results also show that OsIRT1, OsIRT2, and OsZIP9 made only small contributions to Cd uptake under low Zn conditions but not under high Zn conditions, whereas the dominant role of OsNRAMP5 in Cd uptake diminished under low Zn conditions.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Zinc/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Translocación Genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
18.
BMC Infect Dis ; 23(1): 584, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674103

RESUMEN

OBJECTIVE: To estimate the prevalence and risk factors associated with tuberculosis (TB) among people living with human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS) in China. METHODS: A systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. After the literature was screened based on the inclusion and exclusion criteria, STATA® version 17.0 software was used for the meta-analysis. The heterogeneity among study data was assessed using I2 statistics. Subgroup analysis and meta-regressions were performed to further explore the source of heterogeneity. RESULTS: A total of 5241 studies were retrieved. Of these, 44 studies were found to be eligible. The pooled prevalence of HIV/TB co-infection was 6.0%. The risk factors for HIV/TB co-infection included a low CD4+ T cell count, smoking, intravenous drug use and several other sociodemographic and clinical factors. Bacillus Calmette-Guérin (BCG) vaccination history was a protective factor. CONCLUSION: A high prevalence of TB was observed among people living with HIV/AIDS in China. Low CD4+ T cell count, smoking, and intravenous drug use were the primary risk factors for HIV/TB co-infection, whereas BCG vaccination history was a protective factor. Checking for TB should be prioritized in HIV screening and healthcare access. SYSTEMATIC REVIEW REGISTRATION: Registered on PROSPERO, Identifier: CRD42022297754.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Coinfección , Tuberculosis , Humanos , Vacuna BCG , Coinfección/epidemiología , Prevalencia , Factores de Riesgo , Tuberculosis/epidemiología , China/epidemiología
19.
J Nat Prod ; 86(6): 1437-1448, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37200063

RESUMEN

Seven previously undescribed diterpenoids, tinocrisposides A-D (1-4) and borapetic acids A (5), B (6), and C (7), together with 16 known compounds, were isolated from the stem of Tinospora crispa (Menispermaceae). The structures of the new isolates were elucidated by spectroscopic and chemical methods. The ß-cell protective effect of the tested compounds was examined on insulin-secreting BRIN-BD11 cells under dexamethasone treatment. Diterpene glycosides 12, 14-16, and 18 presented a substantial protective effect on BRIN-BD11 cells treated with dexamethasone in a dose-dependent manner. Compounds 4 and 17 with two sugar moieties exhibited clear protective effects on ß-cells.


Asunto(s)
Diterpenos , Tinospora , Glicósidos/farmacología , Glicósidos/química , Tinospora/química , Diterpenos/farmacología , Dexametasona
20.
J Nanobiotechnology ; 21(1): 75, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864504

RESUMEN

In recent years, the rapid development of nanotechnology has made significant impacts on the industry. With the wide application of nanotechnology, nanoparticles (NPs) are inevitably released into the environment, and their fate, behavior and toxicity are indeterminate. Studies have indicated that NPs can be absorbed, transported and accumulated by terrestrial plants. The presence of NPs in certain edible plants may decrease harvests and threaten human health. Understanding the transport and toxicity of NPs in plants is the basis for risk assessment. In this review, we summarize the transportation of four types of NPs in terrestrial plants, and the phytotoxicity induced by NPs, including their impacts on plant growth and cell structure, and the underlying mechanisms such as inducing oxidative stress response, and causing genotoxic damage. We expect to provide reference for future research on the effects of NPs on plants.


Asunto(s)
Nanopartículas , Humanos , Nanopartículas/toxicidad , Daño del ADN , Nanotecnología , Estrés Oxidativo , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA