Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401249, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482948

RESUMEN

Zn metal anodes in aqueous electrolytes suffer from interface issues including uncontrolled dendrite growth and undesired side reactions, resulting in their limited application in terms of short circuits and cell failure. Herein, a hybrid interface chemistry strategy is developed through ultrafast microwave polarization at the skin region of bare Zn. Owing to efficient Joule heating directed by abundant local hot spots at electron valleys, the rapid establishment of a dense interfacial layer can be realized within a minute. Stabilized Zn with suppressed side reactions or surface corrosion is therefore achieved due to the interfacial protection. Importantly, hybrid zincophilic sites involving laterally/vertically interconnected Cu-Zn intermetallic compound and Zn2+ -conductive oxide species ensure mixed charge conducting (denoted as CuHL@Zn), featuring uniformly distributed electric field and boosted Zn2+ diffusion kinetics. As a consequence, CuHL@Zn in symmetric cells affords lifespans of 2800 and 3200 h with ultra-low polarization voltages (≈19 and 56 mV) at a plating capacity of 1.0 mAh cm-2 for 1 and 5 mA cm-2 , respectively. The CuHL@Zn||MnO2 full cell further exhibits cycling stability with a capacity retention of over 80% for 500 cycles at 2 A g-1 .

2.
Angew Chem Int Ed Engl ; : e202404289, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712497

RESUMEN

Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29 % with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34 %, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.

3.
Angew Chem Int Ed Engl ; 63(20): e202318754, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407918

RESUMEN

In the pursuit of highly efficient perovskite solar cells, spiro-OMeTAD has demonstrated recorded power conversion efficiencies (PCEs), however, the stability issue remains one of the bottlenecks constraining its commercial development. In this study, we successfully synthesize a novel self-polymerized spiro-type interfacial molecule, termed v-spiro. The linearly arranged molecule exhibits stronger intermolecular interactions and higher intrinsic hole mobility compared to spiro-OMeTAD. Importantly, the vinyl groups in v-spiro enable in situ polymerization, forming a polymeric protective layer on the perovskite film surface, which proves highly effective in suppressing moisture degradation and ion migration. Utilizing these advantages, poly-v-spiro-based device achieves an outstanding efficiency of 24.54 %, with an enhanced open-circuit voltage of 1.173 V and a fill factor of 81.11 %, owing to the reduced defect density, energy level alignment and efficient interfacial hole extraction. Furthermore, the operational stability of unencapsulated devices is significantly enhanced, maintaining initial efficiencies above 90 % even after 2000 hours under approximately 60 % humidity or 1250 hours under continuous AM 1.5G sunlight exposure. This work presents a comprehensive approach to achieving both high efficiency and long-term stability in PSCs through innovative interfacial design.

4.
Nat Commun ; 14(1): 573, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732540

RESUMEN

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.

5.
Nat Commun ; 14(1): 3216, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270581

RESUMEN

Although the power conversion efficiency values of perovskite solar cells continue to be refreshed, it is still far from the theoretical Shockley-Queisser limit. Two major issues need to be addressed, including disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. Herein, we develop a thermally polymerized additive as the polymer template in the perovskite film, which can form monolithic perovskite grain and a unique "Mortise-Tenon" structure after spin-coating hole-transport layer. Importantly, the suppressed non-radiative recombination and balanced interface charge extraction benefit from high-quality perovskite crystals and Mortise-Tenon structure, resulting in enhanced open-circuit voltage and fill-factor of the device. The PSCs achieve certified efficiency of 24.55% and maintain >95% initial efficiency over 1100 h in accordance with the ISOS-L-2 protocol, as well as excellent endurance according to the ISOS-D-3 accelerated aging test.

6.
ACS Appl Mater Interfaces ; 14(47): 53331-53339, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36395380

RESUMEN

To date, numbers of polymeric hole-transporting materials (HTMs) have been developed to improve interfacial charge transport to achieve high-performance inverted perovskite solar cells (PSCs). However, molecular design for passivating the underlying surface defects between perovskite and HTMs is a neglected issue, which is a major bottleneck to further enhance the performance of the inverted devices. Herein, we design and synthesize a new polymeric HTM PsTA-mPV with the methylthiol group, in which a lone pair of electrons of sulfur atoms can passivate the underlying interface defects of the perovskite more efficiently by coordinating Pb2+ vacancies. Furthermore, PsTA-mPV exhibits a deeper highest occupied molecular orbital (HOMO) level aligned with perovskite due to the π-acceptor capability of sulfur, which improves interfacial charge transfer between perovskite and the HTM layer. Using PsTA-mPV as a dopant-free HTM, the inverted PSCs show 20.2% efficiency and long-term stability, which is ascribed to surface defect passivation, well energy-level matching with perovskite, and efficient charge extraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA