Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2208875119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191223

RESUMEN

Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , ADN/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(51): 25591-25601, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796591

RESUMEN

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Bacteriano , ADN Polimerasa Dirigida por ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
J Biol Chem ; 295(28): 9542-9550, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430399

RESUMEN

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.


Asunto(s)
Bacteriófago T7 , Replicación del ADN , ADN Viral , ADN Polimerasa Dirigida por ADN , Proteínas de Escherichia coli , Escherichia coli , Tiorredoxinas , Bacteriófago T7/enzimología , Bacteriófago T7/genética , ADN Viral/biosíntesis , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
Nucleic Acids Res ; 44(13): e118, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27185891

RESUMEN

Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo Cromosómico/métodos , Humanos , Análisis de Secuencia de ADN
5.
Nucleic Acids Res ; 44(4): 1681-90, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26657641

RESUMEN

Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, ß. Single-molecule experiments reveal that the interactions of Pol II and Pol III with ß allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a ß-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.


Asunto(s)
ADN Polimerasa III/genética , ADN Polimerasa II/genética , ADN Polimerasa beta/genética , ADN/biosíntesis , ADN/genética , Daño del ADN/genética , ADN Polimerasa II/química , ADN Polimerasa III/química , ADN Polimerasa beta/química , Reparación del ADN/genética , Replicación del ADN/genética , Escherichia coli/enzimología , Escherichia coli/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Estructura Terciaria de Proteína
6.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853898

RESUMEN

Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three E. coli TLS polymerases interact with the ß2 processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also makes a unique secondary contact with the clamp through non-CBM residues. However, the role of this "rim contact" in Pol IV-mediated TLS remains poorly understood. Here we show that the rim contact is critical for TLS past strong replication blocks. In in vitro reconstituted Pol IV-mediated TLS, ablating the rim contact compromises TLS past 3-methyl dA, a strong block, while barely affecting TLS past N2-furfuryl dG, a weak block. Similar observations are also made in E. coli cells bearing a single copy of these lesions in the genome. Within lesion-stalled replication forks, the rim interaction and ssDNA binding protein cooperatively poise Pol IV to better compete with Pol III for binding to a cleft through its CBM. We propose that this bipartite clamp interaction enables Pol IV to rapidly resolve lesion-stalled replication through TLS at the fork, which reduces damage induced mutagenesis.

7.
Nat Struct Mol Biol ; 29(9): 932-941, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36127468

RESUMEN

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
8.
Nat Commun ; 8(1): 2170, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255195

RESUMEN

Unrepaired DNA lesions are a potent block to replication, leading to replication fork collapse, double-strand DNA breaks, and cell death. Error-prone polymerases overcome this blockade by synthesizing past DNA lesions in a process called translesion synthesis (TLS), but how TLS polymerases gain access to the DNA template remains poorly understood. In this study, we use particle-tracking PALM to image live Escherichia coli cells containing a functional fusion of the endogenous copy of Pol IV to the photoactivatable fluorescent protein PAmCherry. We find that Pol IV is strongly enriched near sites of replication only upon DNA damage. Surprisingly, we find that the mechanism of Pol IV recruitment is dependent on the type of DNA lesion, and that interactions with proteins other than the processivity factor ß play a role under certain conditions. Collectively, these results suggest that multiple interactions, influenced by lesion identity, recruit Pol IV to sites of DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Microscopía Fluorescente/métodos , Mutación , Unión Proteica
9.
PLoS One ; 7(9): e45651, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029161

RESUMEN

We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I G(q)-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15-20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gα(q), and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by G(q). We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gα(q), in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets.


Asunto(s)
Técnicas Biosensibles , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Biocatálisis , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia
10.
Curr Biol ; 21(23): 1979-87, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22119528

RESUMEN

BACKGROUND: PLC-ß signaling is generally thought to be mediated by allosteric activation by G proteins and Ca(2+). Although availability of the phosphatidylinositol-4,5-biphosphate (PIP(2)) substrate is limiting in some cases, its production has not been shown to be independently regulated as a signaling mechanism. WNK1 protein kinase is known to regulate ion homeostasis and cause hypertension when expression is increased by gene mutations. However, its signaling functions remain largely elusive. RESULTS: Using diacylglycerol-stimulated TRPC6 and inositol trisphosphate-mediated Ca(2+) transients as cellular biosensors, we show that WNK1 stimulates PLC-ß signaling in cells by promoting the synthesis of PIP(2) via stimulation of phosphatidylinositol 4-kinase IIIα. WNK1 kinase activity is not required. Stimulation of PLC-ß by WNK1 and by Gα(q) are synergistic; WNK1 activity is essential for regulation of PLC-ß signaling by G(q)-coupled receptors, and basal input from G(q) is necessary for WNK1 signaling via PLC-ß. WNK1 further amplifies PLC-ß signaling when it is phosphorylated by Akt kinase in response to insulin-like growth factor. CONCLUSIONS: WNK1 is a novel regulator of PLC-ß that acts by controlling substrate availability. WNK1 thereby coordinates signaling between G protein and Akt kinase pathways. Because PIP(2) is itself a signaling molecule, regulation of PIP(2) synthesis by WNK1 also allows the cell to initiate PLC signaling while independently controlling the effects of PIP(2) on other targets. These findings describe a new signaling pathway for Akt-activating growth factors, a mechanism for G protein-growth factor crosstalk, and a means to independently control PLC signaling and PIP(2) availability.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfolipasa C beta/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Calcio/metabolismo , ADN Complementario/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Antígenos de Histocompatibilidad Menor , Oligonucleótidos Antisentido/genética , Técnicas de Placa-Clamp , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Proteína Quinasa Deficiente en Lisina WNK 1
11.
Proc Natl Acad Sci U S A ; 101(31): 11328-33, 2004 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-15263087

RESUMEN

Activation of telomerase is crucial for cells to gain immortality. Most normal human somatic cells have a limited proliferative life span, and expression of the rate-limiting telomerase catalytic subunit, known as human telomerase reverse transcriptase (hTERT), has been believed to be tightly repressed. This model of hTERT regulation is challenged by the recent identification of the induction of hTERT in normal cycling human fibroblasts during their transit through S phase. Here we show the small-molecule-based identification of the assembly and disassembly of E2F-pocket protein-histone deacetylase (HDAC) complex as a key mechanistic basis for the repression and activation of hTERT in normal human cells. A cell-based chemical screen was used to identify a small molecule, CGK1026, that derepresses hTERT expression. CGK1026 inhibits the recruitment of HDAC into E2F-pocket protein complexes assembled on the hTERT promoter. Chromatin immunoprecipitation analysis reveals dynamic alterations in hTERT promoter occupancy by E2F and pocket proteins according to the cell cycle-dependent regulation of hTERT. Dominant-negative or protein-knockout strategies to disrupt the assembly of E2F-pocket protein-HDAC complex derepress hTERT and telomerase activity. Taken together with the results on the regulatory function of these complexes in cellular senescence and tumorigenesis, our findings suggest that dynamic assembly of E2F-pocket protein-HDAC complex plays a central role in the regulation of hTERT in a variety of proliferative conditions (e.g., normal cycling, senescent, and tumor cells).


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , División Celular/fisiología , Línea Celular , Senescencia Celular/fisiología , Factores de Transcripción E2F , Inducción Enzimática/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Prueba de Complementación Genética , Humanos , Regiones Promotoras Genéticas , Telomerasa/genética
12.
J Biol Chem ; 278(17): 15272-8, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12582166

RESUMEN

Interferon regulatory factor 3 (IRF3) is activated in response to various environmental stresses including viral infection and DNA-damaging agents. However, the biological function of IRF3 in cell growth is not well understood. We demonstrated that IRF3 markedly inhibited growth and colony formation of cells. IRF3 blocked DNA synthesis and induced apoptosis. Based on this negative control of cell growth by IRF3, we examined whether functional loss of IRF3 may contribute to oncogenic transformation. IRF3 activity was specifically inhibited by expression of its dominant negative mutant. This mutant lacks a portion of the DNA binding domain like IRF3a, an alternative splice form of IRF3 in the cells. This dominant negative inhibition blocked expression of specific IRF3 target genes. Mutant IRF3 efficiently transformed NIH3T3 cells, as demonstrated by anchorage-independent growth in soft agar and tumorigenicity in nude mice. These results imply that IRF3 may function as a tumor suppressor and suggest a possible role for the relative levels of IRF3 and its dominant negative mutant in tumorigenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Mutación , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Células 3T3 , Animales , Apoptosis , Sitios de Unión/genética , División Celular , Transformación Celular Neoplásica/genética , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Genes Dominantes , Células HeLa , Humanos , Factor 3 Regulador del Interferón , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA