RESUMEN
Ammonium is an important nitrogen sources for plant growth. In this study, we report on the gene characterization of the ammonium transporter AMT1 subfamily in the apple rootstock Malus robusta Rehd. Thirteen AMT genes were comprehensively evaluated from the apple genome (version 1.0). Then the gene features and expression patterns of five AMT1 members from M. robusta were analyzed. These genes fell into four clusters in the AMT phylogenetic tree: clade I (MrAMT1;1 and MrAMT1;3), clade II (MrAMT1;4), clade III (MrAMT1;2), and clade IV (MrAMT1;5). All the AMT1s, apart from MrAMT1;4, were expressed in vegetative organs and strongly responded to nitrogen concentration changes. For example, MrAMT1;2 and MrAMT1;3 had high transcript accumulation levels in the leaves and roots, respectively. Finally, the functions of these AMT1s were studied in detail by heterologous expression in yeast. These genes allowed strain 31019b to assimilate nitrogen, but their 15NH4+ uptake kinetics varied. These results revealed the functional roles of AMT1 during ammonium absorption in the AMT-defective mutant yeast system.
Asunto(s)
Proteínas de Transporte de Catión/genética , Malus/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Compuestos de Amonio/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética/métodos , Malus/metabolismo , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismoRESUMEN
Ammonium is the primarily nitrogen source for plant growth, but the molecular basis of ammonium acquisition in fruit species remains poorly understood. In this study, we report on the characterization of two new ammonium transporters (AMT) in the perennial tree Pyrus betulaefolia. In silico analyses and yeast complementation assays revealed that both PbAMT1;3 and PbAMT1;5 can be classified in the AMT1 sub-family. The specific expression of PbAMT1;3 in roots and of PbAMT1;5 in leaves indicates that they have diverse functions in ammonium uptake or transport in P. betulaefolia. Their expression was strongly influenced by ammonium availability. In addition, the transcript level of PbAMT1;5 was significantly affected by the diurnal cycle and senescence hormones. They conferred the ability to uptake nitrogen to the yeast strain 31019b; however, the (15)NH4 (+) uptake kinetics of PbAMT1;3 were different from those of PbAMT1;5. Indeed, PbAMT1;3 had a higher affinity for (15)NH4 (+), and pH changes were associated with this substrates' transport in yeast. The present study provides basic gene features and transcriptional information for the two new members of the AMT1 sub-family in P. betulaefolia and will aid in decoding the precise roles of AMTs in P. betulaefolia physiology.
Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Pyrus/genética , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cinética , Nitrógeno/farmacología , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fotoperiodo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pyrus/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transcripción Genética/efectos de los fármacosRESUMEN
BACKGROUND: Pears (Pyrus spp. L.) are an important genus of trees that produce one of the world's oldest fruit crops. Salinity stress is a common limiting factor for plant productivity that significantly affects the flavor and nutritional quality of pear fruits. Much research has shown that calcium signaling pathways, mediated by Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs), are closely associated with responses to stresses, including salt. However, little is known about the molecular mechanisms that govern the relationship between salt stress and calcium signaling pathways in pear plants. The available genomic information for pears has promoted much functional genomic analysis and molecular breeding of the genus. This provided an ample foundation for characterizing the transcriptome of pear under salt stress. RESULTS: A high-throughput Illumina RNA-seq technology was used to identify a total of 78,695 unigenes that were successfully annotated by BLASTX analysis, using the publicly available protein database. Additionally, 2,855 novel transcripts, 218,167 SNPs, 23,248 indels and 18,322 alternative splicing events occurred. Assembled unique sequences were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which revealed that the main activated genes in pear are predominately involved in functions such as basic physiological processes, metabolic pathways, operation of cellular components, signal transduction mechanisms, and other molecular activities. Through targeted searches of the annotations, the majority of the genes involved in calcium signaling pathways were identified, among which, four genes were validated by molecular cloning, while 11 were validated by RT-qPCR expression profiles under salt stress treatment. CONCLUSIONS: These results facilitate a better understanding of the molecular genetics and functional genomic mechanisms of salt stress in pear plants. Furthermore, they provide a valuable foundation for additional research on the molecular biology and functional genomics of pear and related species.
Asunto(s)
Pyrus/genética , Transcriptoma/genética , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Perfilación de la Expresión GénicaRESUMEN
Contamination by heavy metals is a major environmental problem worldwide and microbial bioremediation is an efficient method for removing this type of pollution. The plant enzymephytochelatin synthase (PCS, also known as glutathione g-glutamylcysteinyltransferase, EC2.3.2.15) involved in the synthesis of phytochelatins (PCs), which are metal-binding cysteine-rich peptides, has a major role in the detoxification of heavy metals in plants. Expression of the PcPCS1 gene from the bean pear (Pyrus calleryana Dcne.) was induced after cadmium and copper treatments. However, functional analysis of this gene in vivo has not been reported. And it is or not suitable for bioremediation also needs to be assessed. In this study, we found Escherichia coli with over-expressed PcPCS1 had enhanced tolerance to cadmium, copper, sodium, and mercury. E. colicells transformed with pPcPCS1 was found to survive in solid M9 medium containing 2.0 mM Cd(2+), 4.0 mM Cu(2+). 4.5% (w/v) Na+, or 200 µ MHg(2+). Moreover, the growth curve showed 1.5 mM Cd(2+), 2.5 mM Cu(2+), 3.5% (w/v) Naþ, and 100 µ MHg(2+) had no effect on the growth of the E. coli cells transformed with pPcPCS1. Also, we found the contents of PCs and the accumulation of cadmium,copper, sodium, and mercury ions were enhanced in the recombinant E. coli strain Rosetta(TM) (DE3).These results suggested the PcPCS1 gene might be a candidate for heavy metal bioremediation via recombinant bacteria.
Asunto(s)
Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metales Pesados/metabolismo , Pyrus/genética , Biodegradación Ambiental , Cadmio/metabolismo , China , Cobre/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/crecimiento & desarrollo , Mercurio/metabolismo , Fitoquelatinas/metabolismo , Pyrus/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismoRESUMEN
The HD-Zip transcription factors, which are unique to plant kingdom, belong to Homeobox proteins. They are composed of highly conserved HD (Homeodomain) and Leu zipper (Zip) element. The former binds specifically to DNA and the later mediates the formation of dimerization. Based on the structure features, HD-Zip transcription factors can be classified into four subfamilies HD-Zip I - IV, which are involved in different biological processes of plants including growth and development, photomorphogenesis, flowering, fruit ripening, and adaptation response to environmental stresses. HD-Zip transcription factors act as the integrators of development and environmental cues and endogenous hormone signal pathway to regulate targeted gene expression and plants adaptation response. In this review, the most advanced researches on biological functions of HD-Zip were summarized based on the researches of Arabidopsis HD-Zip transcription factors and the results from other species. The aim of this article is to provide the basis for studying the functions of new genes encoding HD-Zip proteins from other species and illustrating the molecular mechanism of HD-Zip on growth and development of plant under normal and unfavorable conditions.
Asunto(s)
Proteínas de Homeodominio/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Leucina Zippers , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/genética , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
Fruit quality is defined by attributes that give value to a commodity. Flavor, texture, nutrition, and shelf life are key quality traits that ensure market value and consumer acceptance. In pear fruit, soluble sugars, organic acids, amino acids, and total flavonoids contribute to flavor and overall quality. Transcription factors (TFs) regulate the accumulation of these metabolites during development or in response to the environment. Here, we report a novel TF, PpbZIP44, as a positive regulator of primary and secondary metabolism in pear fruit. Analysis of the transient overexpression or RNAi-transformed pear fruits and stable transgenic tomato fruits under the control of the fruit-specific E8 promoter demonstrated that PpZIP44 substantially affected the contents of soluble sugar, organic acids, amino acids, and flavonoids. In E8::PpbZIP44 tomato fruit, genes involved in carbohydrate metabolism, amino acid, and flavonoids biosynthesis were significantly induced. Furthermore, in PpbZIP44 overexpression or antisense pear fruits, the expression of genes in the related pathways was significantly impacted. PpbZIP44 directly interacted with the promoter of PpSDH9 and PpProDH1 to induce their expression, thereby depleting sorbitol and proline, decreasing citrate and malate, and enhancing fructose contents. PpbZIP44 also directly bound to the PpADT and PpF3H promoters, which led to the carbon flux toward phenylalanine metabolites and enhanced phenylalanine and flavonoid contents. These findings demonstrate that PpbZIP44 mediates multimetabolism reprogramming by regulating the gene expression related to fruit quality compounds.
RESUMEN
Rapid alkalinization factors (RALFs) are cysteine-rich peptides that play important roles in a variety of biological processes, such as cell elongation and immune signaling. Recent studies in Arabidopsis have shown that RALFs regulate pollen tube growth via plasma membrane receptor-like kinases (RLKs). However, the downstream signal transduction mechanisms of RLKs in pollen tubes are unknown. Here, we identified PbrRALF2, a pear (Pyrus bretschneideri) pollen RALF peptide that inhibits pollen tube growth. We found that PbrRALF2 interacts with a malectin-like domain-containing RLK, PbrCrRLK1L13. The relative affinity between PbrRALF2 and PbrCrRLK1L13 was at the submicromolar level, which is consistent with the values of ligand-receptor kinase pairs and the physiological concentration for PbrRALF2-mediated inhibition of pollen tube growth. After binding to its extracellular domain, PbrRALF2 activated the phosphorylation of PbrCrRLK1L13 in a dose-dependent manner. We further showed that the MAP kinase PbrMPK18 is a downstream target of PbrCrRLK1L13 that mediates PbrRALF2-elicited reactive oxygen species (ROS) production. The excessive accumulation of ROS inhibits pollen tube growth. We show that MPK acts as a mediator for CrRLK1L to stimulate ROS production, which might represent a general mechanism by which RALF and CrRLK1L function in signaling pathways.
RESUMEN
Transcription factors regulate gene expression in response to various external and internal cues by activating or suppressing downstream genes. Significant progress has been made in identifying and characterizing the Cysteine3Histidine (C3H) gene family in several dicots and monocots. They are characterized by their signature motif of three cysteine and one histidine residues, and reportedly play important roles in regulation of plant growth, developmental processes and environmental responses. In this study, we performed genome-wide and deep analysis of putative C3H genes, and a total of 117 PbeC3H members, were identified in P. betulaefolia and classified into 12 groups. Results were supported by the gene structural characteristics and phylogenetic analysis. These genes were unevenly distributed on 17 chromosomes. The gene structures of the C3H genes were relatively complex but conserved in each group. The C3H genes experienced a WGD event that occurred in the ancestor genome of P. betulaefolia and apple before their divergence based on the synonymous substitutions (Ks) values. There were 35 and 37 pairs of paralogous genes in the P. betulaefolia and apple genome, respectively, and 87 pairs of orthologous genes between P. betulaefolia and apple were identified. Except for one orthologous pairs PbeC3H66 and MD05G1311700 which had undergone positive selection, the other C3H genes had undergone purifying selection. Expression profiles showed that high salinity stress could influence the expression level of C3H genes in P. betulaefolia. Four members were responsive to salt stress in roots, nine were responsive to salt stress in leaves and eight showed inhibited expression in leaves. Results suggested important roles of PbeC3H genes in response to salt stress and will be useful for better understanding the complex functions of the C3H genes, and will provide excellent candidates for salt-tolerance improvement.
RESUMEN
Lectin receptor-like kinases (LecRLKs) are membrane-bound receptors that are believed to be involved in biotic and abiotic stress responses. However, little is known about the LecRLK family in pear. In this study, a total of 172 LecRLK genes were first identified in the entire pear genome. The 172 LecRLKs were divided into three types (111 G-, 59 L- and two C-types) based on their structure and phylogenetic relationships. LecRLKs gene expressions were detected in different pear tissues including roots, stems, leaves, flowers and fruits, and the most of the 11 selected LecRLKs exhibited similar expression patterns. Furthermore, six selected LecRLKs were shown to be involved in salt stress response. Overexpression of PbLRK138, an L-type LecRLK, caused cell death and induced expression of defense-related genes in Nicotiana benthamiana. Two deletion mutants containing lectin or transmembrane and serine/threonine kinase domains did not trigger cell death. In addition, only the mutant with the transmembrane domain was localized to the plasma membrane.
Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Pyrus/genética , Receptores Mitogénicos/metabolismo , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Pyrus/enzimología , Pyrus/metabolismo , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
Increasing evidence shows that long noncoding RNAs (lncRNAs) play important roles in developmental regulation and many other biological processes in plants. However, identification of lncRNAs in Pyrus betulifolia is limited compared with studies of functional gene expression. Using high-throughput sequencing technology, the transcriptome of P. betulifolia under drought stress was analyzed to identify lncRNAs. A total of 14,478 lncRNAs were identified, of which 251 were found to be drought-responsive. The putative target genes of these differentially expressed lncRNAs were significantly enriched in metabolic processes, organic substance metabolic processes, macromolecule metabolic processes, and heterocyclic compound binding. Real-time quantitative polymerase chain reaction validation suggested that the results of the RNA sequencing data analysis were reliable. This study will provide genetic resources for pear breeding and provide reference to other pomological studies.
RESUMEN
Circular RNAs (circRNAs) play important roles in miRNA function and transcriptional control. However, little is known regarding circRNAs in the pear. In this study, we identified circRNAs using deep sequencing and analyzed their expression under drought stress. We identified 899 circRNAs in total, among which 33 (23 upregulated, 10 downregulated) were shown to be dehydration-responsive. We performed GO and KEGG enrichment analysis to predict the functions of differentially expressed circRNAs. 309 circRNAs were predicted to act as sponges for 180 miRNAs. A circRNA-miRNA co-expression network was constructed based on correlation analysis between the differentially expressed circRNAs and their miRNA binding sites. Our study will provide a rich genetic resource for the discovery of genes related to drought stress, and can readily be applied to other fruit trees.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pyrus/metabolismo , ARN de Planta/biosíntesis , Estrés Fisiológico , DeshidrataciónRESUMEN
The genetic regulatory mechanisms that govern natural corolla senescence in petunia are not well understood. To identify key genes and pathways that regulate the process, we performed a transcriptome analysis in petunia corolla at four developmental stages, including corolla fully opening without anther dehiscence (D0), corolla expansion, 2 days after anthesis (D2), corolla with initial signs of senescence (D4), and wilting corolla (D7). We identified large numbers of differentially expressed genes (DEGs), ranging from 4626 between the transition from D0 and D2, 1116 between D2 and D4, a transition to the onset of flower senescence, and 327 between D4 and D7, a developmental stage representing flower senescence. KEGG analysis showed that the auxin- and ethylene-related hormone biosynthesis and signaling transduction pathways were significantly activated during the flower development and highly upregulated at onset of flower senescence. Ethylene emission was detected at the D2 to D4 transition, followed by a large eruption at the D4 to D7 transition. Furthermore, large numbers of transcription factors (TFs) were activated over the course of senescence. Functional analysis by virus-induced gene silencing (VIGS) experiments demonstrated that inhibition of the expression of TFs, such as ethylene-related ERF, auxin-related ARF, bHLH, HB, and MADS-box, significantly extended or shortened flower longevity. Our data suggest that hormonal interaction between auxin and ethylene may play critical regulatory roles in the onset of natural corolla senescence in petunia.
RESUMEN
A major restriction on sand pear (Pyrus pyrifolia) production is black spot disease caused by the necrotrophic fungus Alternaria alternata. However, the pear response mechanism to A. alternata is unknown at the molecular level. Here, host responses of a resistant cultivar Cuiguan (CG) and a susceptible cultivar Sucui1 (SC1) to A. alternata infection were investigated. We found that the primary necrotic lesion formed at 1 dpi and the expansion of lesions was aggressive in SC1. Data from transcriptomic profiles using RNA-Seq technology identified a large number of differentially expressed genes (DEGs) between CG and SC1 in the early phase of A. alternata infection. K-mean cluster and Mapman analysis revealed that genes involved in ethylene (ET) biosynthesis and ET signaling pathway, such as ACS, ACOs, and ERFs, and in hypersensitive response (HR) and programmed cell death (PCD) were significantly enriched and up-regulated in the susceptible cultivar SC1. Conversely, genes involved in response to hydrogen peroxide and superoxide were differentially up-regulated in the resistant cultivar CG after inoculation with the fungus. Furthermore, ET levels were highly accumulated in SC1, but not in CG. Higher activities of detoxifying enzymes such as catalases were detected in CG. Our results demonstrate that the ET-/H2O2-mediated PCD and detoxifying processes play a vital role in the interaction of pear and A. alternata.
RESUMEN
The CBL-CIPK pathway is a plant-specific Ca2+ sensor relaying pathway that has been shown to be involved in plant response to salt stress. Over-expression of CBL-CIPK network genes has been reported to increase salt tolerance in many studies. The studies on the overexpression of CBL-CIPK network genes, however, have used various indices to evaluate the effect of these genes on salt tolerance and have indicated a variety of roles for the major CBL-CIPK pathway genes. Therefore, it is of great interest to analyze the various effects resulting from the overexpression CBL-CIPK pathway genes and their relation to salt tolerance. The meta-analysis conducted in the present study investigated how over-expression of CBLs or CIPKs in transgenic plants affects the response to salt stress and identified the increase or decrease that occurs in these experimental variables when foreign CIPK or CBL genes are overexpressed in transgenic plants. The data from the collective studies on over-expression of CIPKs indicated that 6 of the 11 examined parameters (main effects) increased by 22% or more, while two of the six examined parameters increased by at least 78% in transgenic plants overexpressing CBL genes. In addition to analyzing the impact of overexpression on the main effects, eight different modifying parameters were also analyzed. Results indicated that several moderators impact the extent to which overexpression of CBLs and CIPKs affect the main parameters. The majority of CBLs have been obtained from dicotyledonous plants and most of the CBLs and CIPKs have been expressed in dicotyledonous plants. In comparison to homologous expression, the meta-analysis indicated that heterogeneous expression of CBLs resulted in greater increases in seed germination. The results of the meta-analysis provide information that could be useful in designing research to examine the mechanisms by which CBL-CIPK pathway genes increase salt tolerance in plants.
RESUMEN
A genome-wide identification and cloning of CaM genes in pear was conducted and in compared with Arabidopsis that indicated a conserved expansion of CaM genes in pear, and PbCaMs and AtCaMs had a similar distribution of cis-elements and expressions in response to salt and osmotic stress. In particular, PbCaM1 and PbCaM3 were both significantly upregulated in response to salt and osmotic stress in pear.
Asunto(s)
Calmodulina/genética , Presión Osmótica , Filogenia , Pyrus/genética , Arabidopsis/química , Calmodulina/biosíntesis , Cromosomas de las Plantas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Pyrus/crecimiento & desarrollo , Tolerancia a la Sal/genética , Cloruro de Sodio/toxicidadRESUMEN
The pear is an important temperate fruit worldwide that is produced by a group of species in the genus Pyrus. Callery pear (Pyrus calleryana Decne) is characterized by high resistance to multiple diseases, good adaptability, and high ornamental value, and is therefore widely planted in pear orchards for edible fruit production or as stock. Plant pathogens are a major threat to pear yield. Black spot disease, caused by the filamentous fungus Alternaria alternata, is one of the most serious diseases in pear. Elucidation of resistant genes to black spot disease is extremely important for understanding the underlying mechanisms as well as for the development of resistant cultivars. In this study, high-throughput single-strand RNA-sequencing was used to compare the transcriptome profiles of Callery pear leaves before and after A. alternata incubation for 7 days. The analysis yielded 73.3 Gb of clean data that were mapped onto the reference genome of the Chinese pear, and differentially expressed gene(DEG)s were identified with |log2FC| ≥ 1. Functional annotation demonstrated that black spot disease promoted great changes in the overall metabolism, and enrichment analysis of gene ontology terms showed that most of them are closely linked to signalling network and photosynthesis. Specifically, the genes included mainly transcription factors and genes involved in calcium signalling and ethylene and jasmonate pathways. Eight members of the ethylene response factor transcription factor gene family Group IX, including ERF1, ERF7, and ERF105, were up-regulated to 2.03-3.37-fold compared with CK, suggesting their role in the defence response to pathogen infection. Additionally, multiple transcription factors involved in biotic stresses, such as NAC78, NAC2, MYB44, and bHLH28, were up-regulated. Furthermore, we identified 144 long non-coding (lnc)RNAs, providing new insight into the involvement of lncRNAs in the response to black spot disease. Our study provides valuable data on the molecular genetics and functional genomic mechanisms of resistance to black spot disease in Callery pear. A good understanding of the molecular response to this disease will allow the development of durable and environmentally friendly control strategies.
Asunto(s)
Alternaria/patogenicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Pyrus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , TranscriptomaRESUMEN
The tomato Ve1 gene and several Ve1 homologues are involved in the resistance to Verticillium dahliae. Here, we report on another Ve homologous gene, Gbvdr3, from a Verticillium wilt-resistant cotton cultivar, Gossypium barbadense Hai7124, which has a 3207-bp region that encodes a predicted receptor-like protein. Transient expression analyses indicated that Gbvdr3 is localized in the plasma membrane, and virus-induced gene silencing of Gbvdr3 compromised the resistance of Hai7124 cotton to a defoliating strain of V. dahliae, V991, but not to a non-defoliating strain, BP2. This resistance pattern was further confirmed by over-expression of Gbvdr3 in transgenic Arabidopsis, which significantly elevated the expression of the ethylene-regulated gene GST2, the ethylene- and jasmonic acid-regulated defense-related genes PR3 and PDF1.2, and the salicylic acid-regulated genes PR1 and PR5, but not the PR2 gene. It also triggered the accumulation of hydrogen peroxide and callose at early time points during infection by the V991 defoliating strain. In contrast, elevated accumulation of hydrogen peroxide or callose in Gbvdr3-expressed Arabidopsis leaves was not apparent under infection by the non-defoliating strain, BP2. These results suggested that Gbvdr3 is involved in the resistance to a unique spectrum of defoliating V. dahliae strains.
Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Verticillium/fisiología , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/inmunología , Secuencia de Bases , Ciclopentanos/metabolismo , Glucanos/metabolismo , Gossypium/citología , Gossypium/inmunología , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Oxilipinas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Plantones/citología , Plantones/genética , Plantones/inmunología , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
Asian pear (Pyrus bretschneideri) is one of the most important fruit crops in the world, and its growth and productivity are frequently affected by abiotic stresses. Calcineurin B-like interacting protein kinases (CIPKs) as caladium-sensor protein kinases interact with Ca(2+)-binding CBLs to extensively mediate abiotic stress responses in plants. Although the pear genome sequence has been released, little information is available about the CIPK genes in pear, especially in response to salt and osmotic stresses. In this study, we systematically identified 28 CIPK family members from the sequenced pear genome and analyzed their organization, phylogeny, gene structure, protein motif, and synteny duplication divergences. Most duplicated PbCIPKs underwent purifying selection, and their evolutionary divergences accompanied with the pear whole genome duplication. We also investigated stress -responsive expression patterns and co-expression networks of CIPK family under salt and osmotic stresses, and the distribution of stress-related cis-regulatory elements in promoter regions. Our results suggest that most PbCIPKs could play important roles in the abiotic stress responses. Some PbCIPKs, such as PbCIPK22, -19, -18, -15, -8, and -6 can serve as core regulators in response to salt and osmotic stresses based on co-expression networks of PbCIPKs. Some sets of genes that were involved in response to salt did not overlap with those in response to osmotic responses, suggesting the sub-functionalization of CIPK genes in stress responses. This study revealed some candidate genes that play roles in early responses to salt and osmotic stress for further characterization of abiotic stress responses medicated by CIPKs in pear.
RESUMEN
Verticillium wilt is a soil borne disease that can cause devastating losses to the production of many economically important crops. A Ve1 homologous gene responding to Verticillium dahliae infection was identified in Vitis vinifera cv. "HeiFeng" by semi-quantitative reverse transcription polymerase chain reaction and was designated as VvVe. The overexpression of VvVe in transgenic Nicotiana benthamiana plants significantly enhanced the resistance to isolate V991 of V. dahliae when compared with the wild type plants. The expressions of defense-related genes including the salicylic acid regulated gene pathogen-related 1 (PR1) but not PR2, the ethylene- and jasmonic acid-regulated genes ethylene response factor 1 (ERF1) and lipoxygenase (LOX) were significantly increased due to over expression of VvVe. And greater accumulation of active oxygen, callose and phenylalanine-ammonia lyase were observed in the leaves of transgenic VvVe tobacco plants than the wild type when under infection by V. dahliae. Moreover, the hypersensitive response mimicking cell death was exclusively occurred in the transgenic VvVe tobacco plants but not in the wild type. Taken together, the VvVe gene is a Ve1 like gene which involves in the signal cascade of salicylic acid, jasmonate, and ethylene defense pathways and enhances defense response to V. dahliae infection in the transgenic tobacco.
Asunto(s)
Genes de Plantas , Nicotiana/microbiología , Verticillium/inmunología , Vitis/genética , Plantas Modificadas Genéticamente , Verticillium/patogenicidadRESUMEN
The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia.