Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 83: 1-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26299391

RESUMEN

Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.


Asunto(s)
Cuerpo Estriado/fisiopatología , Encefalitis/fisiopatología , Infarto de la Arteria Cerebral Media/fisiopatología , Células-Madre Neurales/fisiología , Neurogénesis , Neuronas/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Muerte Celular , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL13/farmacología , Quimiocina CXCL13/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Proteína Doblecortina , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Expresión Génica , Infarto de la Arteria Cerebral Media/patología , Mediadores de Inflamación/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/fisiopatología , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/metabolismo , Neuronas/patología , Ratas , Ratas Wistar , Receptores CXCR5/genética , Receptores CXCR5/fisiología , Accidente Cerebrovascular/patología
2.
Nat Commun ; 4: 1770, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23612311

RESUMEN

Functional studies of resident microglia require molecular tools for their genetic manipulation. Here we show that microRNA-9-regulated lentiviral vectors can be used for the targeted genetic modification of resident microglia in the rodent brain. Using transgenic reporter mice, we demonstrate that murine microglia lack microRNA-9 activity, whereas most other cells in the brain express microRNA-9. Injection of microRNA-9-regulated vectors into the adult rat brain induces transgene expression specifically in cells with morphological features typical of ramified microglia. The majority of transgene-expressing cells colabels with the microglia marker Iba1. We use this approach to visualize and isolate activated resident microglia without affecting circulating and infiltrating monocytes or macrophages in an excitotoxic lesion model in rat striatum. The microRNA-9-regulated vectors described here are a straightforward and powerful tool that facilitates functional studies of resident microglia.


Asunto(s)
Encéfalo/citología , Técnicas Genéticas , Vectores Genéticos/metabolismo , Lentivirus/genética , MicroARNs/metabolismo , Microglía/metabolismo , Envejecimiento/metabolismo , Animales , Regulación hacia Abajo/genética , Femenino , Vectores Genéticos/administración & dosificación , Ratones , Ratones Transgénicos , MicroARNs/genética , Microglía/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Provirus/genética , Ratas , Transgenes
3.
Exp Neurol ; 229(2): 484-93, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21459089

RESUMEN

We have previously shown that following severe brain insults, chronic inflammation induced by lipopolysaccharide (LPS) injection, and status epilepticus, new dentate granule cells exhibit changes of excitatory and inhibitory synaptic drive indicating that they may mitigate the abnormal brain function. Major inflammatory changes in the environment encountering the new neurons were a common feature of these insults. Here, we have asked how the morphology and electrophysiology of new neurons are affected by a comparably mild pathology: repetitive seizures causing hyperexcitability but not inflammation. Rats were subjected to rapid kindling, i.e., 40 rapidly recurring, electrically-induced seizures, and subsequently exposed to stimulus-evoked seizures twice weekly. New granule cells were labeled 1 week after the initial insult with a retroviral vector encoding green fluorescent protein. After 6-8 weeks, new neurons were analyzed using confocal microscopy and whole-cell patch-clamp recordings. The new neurons exposed to the pathological environment exhibited only subtle changes in their location, orientation, dendritic arborizations, and spine morphology. In contrast to the more severe insults, the new neurons exposed to rapid kindling and stimulus-evoked seizures exhibited enhanced afferent excitatory synaptic drive which could suggest that the cells that had developed in this environment contributed to hyperexcitability. However, the new neurons showed concomitant reduction of intrinsic excitability which may counteract the propagation of this excitability to the target cells. This study provides further evidence that following insults to the adult brain, the pattern of synaptic alterations at afferent inputs to newly generated neurons is dependent on the characteristics of the pathological environment.


Asunto(s)
Hipocampo/fisiopatología , Excitación Neurológica/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Convulsiones/fisiopatología , Animales , Forma de la Célula/fisiología , Electrofisiología , Ensayo de Inmunoadsorción Enzimática , Hipocampo/patología , Inmunohistoquímica , Excitación Neurológica/patología , Masculino , Microscopía Confocal , Neuronas/patología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Convulsiones/patología
4.
J Cereb Blood Flow Metab ; 31(4): 1036-50, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21045863

RESUMEN

Stroke induces a systemic response that involves rapid activation of inflammatory cascades, followed later by immunodepression. Experimental stroke-induced responses in the bone marrow, which is the primary source of circulating monocytes and granulocytes, have not been investigated previously. We show that cerebral ischaemia induced early (4 hours) release of CXCR2-positive granulocytes from the bone marrow, which was associated with rapid systemic upregulation of CXCL1 (a ligand for CXCR2) and granulocyte-colony-stimulating factor, a key cytokine involved in the mobilisation of bone marrow leukocytes. This process involves rapid activation of nuclear factor-κB and p38 mitogen-activated protein kinase in bone marrow myeloid cells. T-cell numbers in the bone marrow increased after stroke, and bone marrow cells did not show suppressed cytokine response to bacterial endotoxin stimulation in vitro. Stroke-induced laterality observed in the brain stem and in the bone marrow indicates direct involvement of the autonomic nervous system in stroke-induced cell mobilisation. We also show that systemic inflammatory changes and leukocyte responses in the bone marrow are profoundly affected by both anaesthetic and surgical stress. We conclude that stroke influences leukocyte responses in the bone marrow through multiple mechanisms and suggest that preclinical studies should take into consideration the effect of surgical manipulation in experimental models of stroke.


Asunto(s)
Médula Ósea/patología , Leucocitos/patología , Accidente Cerebrovascular/patología , Animales , Western Blotting , Células de la Médula Ósea/fisiología , Citocinas/metabolismo , Electroforesis en Gel de Poliacrilamida , Endotoxinas/toxicidad , Citometría de Flujo , Lateralidad Funcional/fisiología , Granulocitos/metabolismo , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/patología , Inflamación/patología , Células Asesinas Naturales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , FN-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Linfocitos T/fisiología
5.
J Cereb Blood Flow Metab ; 29(11): 1764-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19654587

RESUMEN

Increasing evidence suggests that peripheral inflammatory responses to stroke and other brain injuries have an important role in determining neurological outcome. The mediators of this response and the temporal relationships between peripheral and central inflammatory alterations are poorly understood. In this study, we show that experimental stroke in mice induces a peripheral inflammatory response that peaks 4 h after stroke, and precedes the peak in brain inflammation 24 h after stroke. This peripheral response is dominated by the induction of the chemokine CXCL-1 and the proinflammatory cytokine interleukin-6 and could serve as an accessible target for therapy and as a source of biomarkers predictive of prognosis.


Asunto(s)
Encefalitis/inmunología , Interleucina-6/biosíntesis , Interleucina-8/biosíntesis , Accidente Cerebrovascular/inmunología , Animales , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/metabolismo , Interleucina-6/sangre , Interleucina-8/sangre , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Factores de Tiempo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA