Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(4): 809-827, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38205694

RESUMEN

Recent findings highlight myelin breakdown as a decisive early event in Alzheimer's Disease (AD) acting as aggravating factor of its progression. However, it is still unclear whether myelin loss is attributed to increased oligodendrocyte vulnerability, reduced repairing capacity or toxic stimuli. In the present study, we sought to clarify the starting point of myelin disruption accompanied with Oligodendrocyte Progenitor Cell (OPC) elimination in the brain of the 5xFAD mouse model of AD at 6 months of age in Dentate Gyrus of the hippocampus in relation to neurotrophin system. Prominent inflammation presence was detected since the age of 6 months playing a key role in myelin disturbance and AD progression. Expression analysis of neurotrophin receptors in OPCs was performed to identify new targets that could increase myelination in health and disease. OPCs in both control and 5xFAD mice express TrkB, TrkC and p75 receptors but not TrkA. Brain-derived neurotrophic factor (BDNF) that binds to TrkB receptor is well-known about its pro-myelination effect, promoting oligodendrocytes proliferation and differentiation, so we focused our investigation on its effects in OPCs under neurodegenerative conditions. Our in vitro results showed that BDNF rescues OPCs from death and promotes their proliferation and differentiation in presence of the toxic Amyloid-ß 1-42. Collectively, our results indicate that BDNF possess an additional neuroprotective role through its actions on oligodendrocytic component and its use could be proposed as a drug-based myelin-enhancing strategy, complementary to amyloid and tau centered therapies in AD.


Asunto(s)
Enfermedad de Alzheimer , Vaina de Mielina , Ratones , Animales , Vaina de Mielina/metabolismo , Enfermedad de Alzheimer/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Oligodendroglía/metabolismo
2.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276593

RESUMEN

One common event that is the most detrimental in neurodegenerative disorders, even though they have a complex pathogenesis, is the increased rate of neuronal death. Endogenous neurotrophins consist of the major neuroprotective factors, while brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine kinase receptor TrkB are described in a number of studies for their important neuronal effects. Normal function of this receptor is crucial for neuronal survival, differentiation, and synaptic function. However, studies have shown that besides direct activation, the TrkB receptor can be transactivated via GPCRs. It has been proven that activation of the 5-HT4 receptor and transactivation of the TrkB receptor have a positive influence on neuronal differentiation (total dendritic length, number of primary dendrites, and branching index). Because of that and based on the main structural characteristics of LM22A-4, a known activator of the TrkB receptor, and RS67333, a partial 5-HT4 receptor agonist, we have designed and synthesized a small data set of novel compounds with potential dual activities in order to not only prevent neuronal death, but also to induce neuronal differentiation in neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Receptor trkB , Fármacos Neuroprotectores/farmacología , Serotonina , Células Cultivadas , Factor Neurotrófico Derivado del Encéfalo , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
Mar Drugs ; 21(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37755078

RESUMEN

Neurodegenerative diseases are incurable and debilitating conditions, characterized by progressive loss and degeneration of vulnerable neuronal populations. Currently, there are no effective therapies available for the treatment of most neurodegenerative disorders. A panel of extracts exhibiting interesting chemical profiles among a high number of bacterial strains isolated from East Mediterranean marine sediments and macroorganisms were evaluated for their activity on TrkB-expressing cells. Among them, the actinobacterial strain Streptomyces sp. BI0788, exhibiting neuroprotective activity in vitro, was selected and cultivated in large-scale. The chemical analysis of its organic extract resulted in the isolation of four new butanolides (1, 4-6), along with two previously reported butanolides (2 and 3) and eight previously reported butenolides (7-14). Compounds 2-4 and 7-14 were evaluated for their neuroprotective effects on TrkB-expressing NIH-3T3 cells. Among them, metabolites 3, 4, 7, 10, 11, 13 and 14 exhibited significant protective activity on the aforementioned cells through the activation of TrkB, the high-affinity receptor for the Brain-Derived Neurotrophic Factor (BDNF), which is well known to play a crucial role in neuronal cell survival and maintenance.

4.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511441

RESUMEN

Neuronal cell fate is predominantly controlled based on the effects of growth factors, such as neurotrophins, and the activation of a variety of signaling pathways acting through neurotrophin receptors, namely Trk and p75 (p75NTR). Despite their beneficial effects on brain function, their therapeutic use is compromised due to their polypeptidic nature and blood-brain-barrier impermeability. To overcome these limitations, our previous studies have proven that DHEA-derived synthetic analogs can act like neurotrophins, as they lack endocrine side effects. The present study focuses on the biological characterization of a newly synthesized analog, ENT-A044, and its role in inducing cell-specific functions of p75NTR. We show that ENT-A044 can induce cell death and phosphorylation of JNK protein by activating p75NTR. Additionally, ENT-A044 can induce the phosphorylation of TrkB receptor, indicating that our molecule can activate both neurotrophin receptors, enabling the protection of neuronal populations that express both receptors. Furthermore, the present study demonstrates, for the first time, the expression of p75NTR in human-induced Pluripotent Stem Cells-derived Neural Progenitor Cells (hiPSC-derived NPCs) and receptor-dependent cell death induced via ENT-A044 treatment. In conclusion, ENT-A044 is proposed as a lead molecule for the development of novel pharmacological agents, providing new therapeutic approaches and research tools, by controlling p75NTR actions.


Asunto(s)
Factores de Crecimiento Nervioso , Receptor de Factor de Crecimiento Nervioso , Humanos , Receptor de Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Factores de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/fisiología
5.
Mol Psychiatry ; 26(4): 1248-1263, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31969694

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a disease associated with dysbiosis, resulting in compromised intestinal epithelial barrier and chronic mucosal inflammation. Patients with IBD present with increased incidence of psychiatric disorders and cognitive impairment. Hippocampus is a brain region where adult neurogenesis occurs with functional implications in mood control and cognition. Using a well-established model of experimental colitis based on the administration of dextran sodium sulfate (DSS) in the drinking water, we sought to characterize the short and long-term effects of colitis on neurogenesis and glia responses in the hippocampus. We show that acute DSS colitis enhanced neurogenesis but with deficits in cell cycle kinetics of proliferating progenitors in the hippocampus. Chronic DSS colitis was characterized by normal levels of neurogenesis but with deficits in the migration and integration of newborn neurons in the functional circuitry of the DG. Notably, we found that acute DSS colitis-induced enhanced infiltration of the hippocampus with macrophages and inflammatory myeloid cells from the periphery, along with elevated frequencies of inflammatory M1-like microglia and increased release of pro-inflammatory cytokines. In contrast, increased percentages of tissue-repairing M2-like microglia, along with elevated levels of the anti-inflammatory cytokine, IL-10 were observed in the hippocampus during chronic DSS colitis. These findings uncover key effects of acute and chronic experimental colitis on adult hippocampal neurogenesis and innate immune cell responses, highlighting the potential mechanisms underlying cognitive and mood dysfunction in patients with IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Células-Madre Neurales , Animales , Humanos , Ratones , Colitis/inducido químicamente , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Células-Madre Neurales/metabolismo
6.
J Neurosci Res ; 99(5): 1474-1495, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583101

RESUMEN

BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model. It diminishes astrocytic accumulation during the demyelination phase leading to a faster remyelination process, while it does not affect oligodendrocyte precursor cell recruitment or microglia/macrophage accumulation. Additionally, our in vitro studies showed that BNN20 acts directly to OLs and enhances their maturation even after they were treated with LPC. This beneficial effect of BNN20 is mediated, primarily, through the neurotrophin receptor TrkA. In addition, BNN20 reduces microglial activation and their transition to their pro-inflammatory state upon lipopolysaccharides stimulation in vitro. Taken together our results suggest that BNN20 could serve as an important molecule to develop blood-brain barrier-permeable synthetic agonists of neurotrophin receptors that could reduce inflammation, protect and increase the number of functional OLs by promoting their differentiation/maturation.


Asunto(s)
Deshidroepiandrosterona/análogos & derivados , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Animales , Deshidroepiandrosterona/administración & dosificación , Deshidroepiandrosterona/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Factores de Crecimiento Nervioso/administración & dosificación , Factores de Crecimiento Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo
7.
Front Neuroendocrinol ; 55: 100788, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31513776

RESUMEN

Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17ß-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Inflamación , Esclerosis Múltiple , Neuroesteroides/metabolismo , Enfermedad de Parkinson , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/metabolismo , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo
8.
J Neuroinflammation ; 17(1): 41, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996225

RESUMEN

BACKGROUND: Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course. METHODS: EAE was induced in C57BL/6 mice 6-8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20-22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system. RESULTS: Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN+ cells, GAP-43+ axons, GFAP+ cells, Arginase1+ cells, and Mac3+ cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase+ cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220+ cells) and no expression on T lymphocytes was noticed. CONCLUSION: Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica/genética , Factor de Crecimiento Nervioso/genética , Receptor trkA/genética , Receptores de Factor de Crecimiento Nervioso/genética , Animales , Linfocitos B/metabolismo , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/biosíntesis , Receptor trkA/biosíntesis , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Médula Espinal/metabolismo , Médula Espinal/patología , Linfocitos T/metabolismo
9.
Exp Cell Res ; 377(1-2): 10-16, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30817930

RESUMEN

Microglia, the parenchymal immune cells of the central nervous system, orchestrate neuroinflammation in response to infection or damage, and promote tissue repair. However, aberrant microglial responses are integral to neurodegenerative diseases and critically contribute to disease progression. Thus, it is important to elucidate how microglia - mediated neuroinflammation is regulated by endogenous factors. Here, we explored the effect of Nerve Growth Factor (NGF), an abundant neurotrophin, on microglial inflammatory responses. NGF, via its high affinity receptor TrkA, downregulated LPS - induced production of pro-inflammatory cytokines and NO in primary mouse microglia and inhibited TLR4 - mediated activation of the NF-κB and JNK pathways. Furthermore, NGF attenuated the LPS - enhanced glycolytic activity in microglia, as suggested by reduced glucose uptake and decreased expression of the glycolytic enzymes Pfkß3 and Ldhα. Consistently, 2DG - mediated glycolysis inhibition strongly downregulated LPS - induced cytokine production in microglial cells. Our findings demonstrate that NGF attenuates pro-inflammatory responses in microglia and may thereby contribute to regulation of microglia - mediated neuroinflammation.


Asunto(s)
Glucólisis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Animales , Citocinas/genética , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
10.
Graefes Arch Clin Exp Ophthalmol ; 257(11): 2429-2436, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31512044

RESUMEN

PURPOSE: Diabetic retinopathy (DR) is a complex eye disease associated with diabetes mellitus. It is characterized by three pathophysiological components, namely microangiopathy, neurodegeneration, and inflammation. We recently reported that intraperitoneal administration of BNN27, a novel neurosteroidal microneurotrophin, reversed the diabetes-induced neurodegeneration and inflammation in rats treated with streptozotocin (STZ), by activating the NGF TrkA and p75 receptors. The aim of the present study was to investigate the efficacy of BNN27 to protect retinal neurons when applied topically as eye drops in the same model. METHODS: The STZ rat model of DR was employed. BNN27 was administered as eye drops to diabetic Sprague-Dawley rats for 7 days, 4 weeks post-STZ (70 mg/kg) injection. Immunohistochemistry and western blot analyses were employed to examine the viability of retinal neurons in control, diabetic, and diabetic-treated animals and the involvement of the TrkA receptor and its downstream signaling ERK1/2 kinases, respectively. RESULTS: BNN27 reversed the STZ-induced attenuation of the immunoreactive brain nitric oxide synthetase (bNOS)- and tyrosine hydroxylase (TH)-expressing amacrine cells and neurofilament (NFL)-expressing ganglion cell axons in a dose-dependent manner. In addition, BNN27 activated/phosphorylated the TrkA receptor and its downstream prosurvival signaling pathway, ERK1/2 kinases. CONCLUSIONS: The results of this study provide solid evidence regarding the efficacy of BNN27 as a neuroprotectant to the diabetic retina when administered topically, and suggest that its pharmacodynamic and pharmacokinetic profiles render it a putative therapeutic for diabetic retinopathy.


Asunto(s)
Deshidroepiandrosterona/administración & dosificación , Diabetes Mellitus Experimental , Retinopatía Diabética/tratamiento farmacológico , Retina/patología , Administración Tópica , Animales , Western Blotting , Deshidroepiandrosterona/farmacocinética , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA