Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(7): 1061-1074.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868227

RESUMEN

Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.


Asunto(s)
ARN , Schizosaccharomyces , ARN/genética , ARN/metabolismo , ADN Primasa/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleasas/genética
2.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352203

RESUMEN

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Asunto(s)
ADN Ligasa (ATP)/ultraestructura , Enzimas Reparadoras del ADN/ultraestructura , Proteína Quinasa Activada por ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Apoptosis/genética , Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestructura , Complejos Multiproteicos/genética , Fosforilación/genética
3.
Nature ; 586(7830): 618-622, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814904

RESUMEN

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Asunto(s)
Intercambio Genético , Endonucleasas/metabolismo , Meiosis , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/genética , Secuencia Conservada , ADN/metabolismo , División del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN Cruciforme/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo
4.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870477

RESUMEN

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Asunto(s)
Proteínas de Unión al ADN , Ácido Fítico , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088835

RESUMEN

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , Endonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endonucleasas/química , Meiosis , Modelos Moleculares , Homólogo 1 de la Proteína MutL/química , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 49(5): 2629-2641, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590005

RESUMEN

We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , ADN/metabolismo , ADN Ligasas/metabolismo , Autoantígeno Ku/química , Multimerización de Proteína
7.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199619

RESUMEN

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Exodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética
9.
J Biol Chem ; 295(51): 17460-17475, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453991

RESUMEN

Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.


Asunto(s)
Recombinación Homóloga , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Proteínas MutL/metabolismo , Camptotecina/farmacología , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Cruciforme , Fase G2 , Rayos gamma , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Proteínas MutL/genética , Mutación , Ftalazinas/farmacología , Piperazinas/farmacología
10.
Eur Biophys J ; 50(3-4): 313-330, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792745

RESUMEN

Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.


Asunto(s)
Sustancias Macromoleculares/análisis , Calorimetría , ADN , Humanos , Ligandos , Proteínas
12.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923616

RESUMEN

DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.


Asunto(s)
Autoantígeno Ku/metabolismo , Animales , Reparación del ADN , Evolución Molecular , Humanos , Autoantígeno Ku/química , Autoantígeno Ku/genética , Procesamiento Proteico-Postraduccional
13.
PLoS Genet ; 13(12): e1007119, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281621

RESUMEN

Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage.


Asunto(s)
ADN Polimerasa III/metabolismo , Dominio Catalítico , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Polimerasa III/genética , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Genéticos , Mutación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Rayos Ultravioleta
14.
Nucleic Acids Res ; 44(10): 4785-4806, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26961308

RESUMEN

Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region.

16.
Nucleic Acids Res ; 42(21): 13174-85, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25378334

RESUMEN

Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Replicación del ADN , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas Intrínsecamente Desordenadas/química , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Ribonucleótido Reductasas/análisis , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 41(13): 6501-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677613

RESUMEN

During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2))-PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2-proteasome pathway to facilitate TLS pathway.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Cromatina/enzimología , ADN Helicasas/química , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga , Humanos , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Rayos Ultravioleta
18.
Proc Natl Acad Sci U S A ; 109(17): E1001-10, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22460800

RESUMEN

The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.


Asunto(s)
Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
19.
Proc Natl Acad Sci U S A ; 108(31): 12663-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768349

RESUMEN

Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X4(1-157)-Cernunnos(1-224) complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X4(1-157) and Cernunnos(1-224) homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4-Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4-Cernunnos interface. We identified four X4 residues (Glu(55), Asp(58), Met(61), and Phe(106)) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Western Blotting , Calorimetría , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Metionina/química , Metionina/genética , Metionina/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
20.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547127

RESUMEN

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Asunto(s)
División del ADN , Paramecium , Paramecium/genética , Paramecium/metabolismo , Roturas del ADN de Doble Cadena , Genoma de Protozoos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Reparación del ADN , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Reparación del ADN por Unión de Extremidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA