Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 628(8008): 648-656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538789

RESUMEN

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.


Asunto(s)
Envejecimiento , Núcleo Celular , Cromatina , Lóbulo Frontal , ARN , Análisis de la Célula Individual , Anciano , Femenino , Humanos , Masculino , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Núcleo Celular/genética , Senescencia Celular/genética , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Lóbulo Frontal/metabolismo , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de la Célula Individual/métodos , Transcripción Genética
2.
Nucleic Acids Res ; 46(14): 7379-7395, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29992293

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing displays diverse spatial patterns across different tissues. However, the human genome encodes only two catalytically active editing enzymes (ADAR1 and ADAR2), suggesting that other regulatory factors help shape the editing landscape. Here, we show that the splicing factor SRSF9 selectively controls the editing of many brain-specific sites in primates. SRSF9 is more lowly expressed in the brain than in non-brain tissues. Gene perturbation experiments and minigene analysis of candidate sites demonstrated that SRSF9 could robustly repress A-to-I editing by ADAR2. We found that SRSF9 biochemically interacted with ADAR2 in the nucleus via its RRM2 domain. This interaction required the presence of the RNA substrate and disrupted the formation of ADAR2 dimers. Transcriptome-wide location analysis and RNA sequencing revealed 1328 editing sites that are controlled directly by SRSF9. This regulon is significantly enriched for brain-specific sites. We further uncovered a novel motif in the ADAR2-dependent SRSF9 binding sites and provided evidence that the splicing factor prevents loss of cell viability by inhibiting ADAR2-mediated editing of genes involved in proteostasis, energy metabolism, the cell cycle and DNA repair. Collectively, our results highlight the importance of SRSF9 as an editing regulator and suggest potential roles for other splicing factors.


Asunto(s)
Adenosina Desaminasa/metabolismo , Sitios de Unión/genética , Encéfalo/citología , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/metabolismo , Adenosina/metabolismo , Secuencia de Bases , Línea Celular , Núcleo Celular/genética , Células HEK293 , Humanos , Inosina/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
PLoS Genet ; 13(7): e1006890, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28686623

RESUMEN

Long non-coding RNA Xist plays a crucial role in establishing and maintaining X-chromosome inactivation (XCI) which is a paradigm of long non-coding RNA-mediated gene regulation. Xist has Xist-specific repeat elements A-F which are conserved among eutherian mammals, underscoring their functional importance. Here we report that Xist RNA repeat E, a conserved Xist repeat element in the Xist exon 7, interacts with ASH2L and contributes to maintenance of escape gene expression level on the inactive X-chromosome (Xi) during XCI. The Xist repeat E-deletion mutant female ES cells show the depletion of ASH2L from the Xi upon differentiation. Furthermore, a subset of escape genes exhibits unexpectedly higher expression in the repeat E mutant cells than the cells expressing wildtype Xist during X-inactivation, whereas the silencing of X-linked non-escape genes is not affected. We discuss the implications of these results to understand the role of ASH2L and Xist repeat E for histone modifications and escape gene regulation during random X-chromosome inactivation.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Transcripción Genética , Inactivación del Cromosoma X/genética , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/biosíntesis , Células Madre Embrionarias/metabolismo , Exones/genética , Eliminación de Gen , Regulación de la Expresión Génica , Silenciador del Gen , Código de Histonas/genética , Ratones , Proteínas Nucleares/biosíntesis , Factores de Transcripción/biosíntesis , Cromosoma X/genética
4.
PLoS Genet ; 12(7): e1006221, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467129

RESUMEN

FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Proteínas de Unión al ADN/biosíntesis , Células HeLa , Proteínas del Grupo de Alta Movilidad/biosíntesis , Histonas/metabolismo , Humanos , Nucleosomas/genética , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional/biosíntesis , Uracilo/metabolismo , Xenopus laevis
5.
Biochim Biophys Acta ; 1859(1): 112-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26260844

RESUMEN

There is increasing evidence for the emergence of long noncoding RNAs (lncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic) is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting lncRNAs and proteins. In this review, we summarize recent updates in our knowledge of lncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Asunto(s)
Epigenómica , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Humanos
6.
PLoS Genet ; 9(9): e1003830, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086160

RESUMEN

NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A-H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.


Asunto(s)
Cromatina/genética , Histonas/genética , FN-kappa B/metabolismo , Nucleosomas/genética , Biosíntesis de Proteínas , Animales , Sitios de Unión , Cromatina/ultraestructura , Proteínas de Unión al ADN/genética , Dimerización , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , FN-kappa B/genética , Nucleosomas/metabolismo , Unión Proteica , Rayos Ultravioleta , Xenopus/genética
7.
Nat Commun ; 14(1): 6519, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845234

RESUMEN

The interphase genome is dynamically organized in the nucleus and decorated with chromatin-associated RNA (caRNA). It remains unclear whether the genome architecture modulates the spatial distribution of caRNA and vice versa. Here, we generate a resource of genome-wide RNA-DNA and DNA-DNA contact maps in human cells. These maps reveal the chromosomal domains demarcated by locally transcribed RNA, hereafter termed RNA-defined chromosomal domains. Further, the spreading of caRNA is constrained by the boundaries of topologically associating domains (TADs), demonstrating the role of the 3D genome structure in modulating the spatial distribution of RNA. Conversely, stopping transcription or acute depletion of RNA induces thousands of chromatin loops genome-wide. Activation or suppression of the transcription of specific genes suppresses or creates chromatin loops straddling these genes. Deletion of a specific caRNA-producing genomic sequence promotes chromatin loops that straddle the interchromosomal target sequences of this caRNA. These data suggest a feedback loop where the 3D genome modulates the spatial distribution of RNA, which in turn affects the dynamic 3D genome organization.


Asunto(s)
Cromatina , ARN , Humanos , Cromatina/genética , ARN/genética , Cromosomas , ADN , ARN Nuclear Pequeño , Genoma Humano/genética
8.
Biomedicines ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36009530

RESUMEN

Background: Current strategies in circulating tumor cell (CTC) isolation in pancreatic cancer heavily rely on the EpCAM and cytokeratin cell status. EpCAM is generally not considered a good marker given its transitory change during Epithelial to Mesenchymal Transition (EMT) or reverse EMT. There is a need to identify other surface markers to capture the complete repertoire of PDAC CTCs. The primary objective of the study is to characterize alternate surface biomarkers to EpCAM on CTCs that express low or negligible levels of surface EpCAM in pancreatic cancer patients. Methods: Flow cytometry and surface mass spectrometry were used to identify proteins expressed on the surface of PDAC CTCs in culture. CTCs were grown under conditions of attachment and in co-culture with naïve neutrophils. Putative biomarkers were then validated in GEMMs and patient samples. Results: Surface proteomic profiling of CTCs identified several novel protein biomarkers. ALCAM was identified as a novel robust marker in GEMM models and in patient samples. Conclusions: We identified several novel surface biomarkers on CTCs expressed under differing conditions of culture. ALCAM was validated and identified as a novel alternate surface marker on EpCAMlow CTCs.

9.
J Exp Clin Cancer Res ; 41(1): 258, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002889

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most difficult cancers to detect early and most patients die from complications arising due to distant organ metastases. The lack of bona fide early biomarkers is one of the primary reasons for late diagnosis of pancreatic cancer. It is a multifactorial disease and warrants a novel approach to identify early biomarkers. METHODS: In order to characterize the proteome, Extracellular vesicles (EVs) isolated from different in vitro conditions mimicking tumor-microenvironment interactions between pancreatic cancer epithelial and stromal cells were analyzed using high throughput mass spectrometry. The biological activity of the secreted EVome was analyzed by investigating changes in distant organ metastases and associated early changes in the microbiome. Candidate biomarkers (KIF5B, SFRP2, LOXL2, and MMP3) were selected and validated on a mouse-human hybrid Tissue Microarray (TMA) that was specifically generated for this study. Additionally, a human TMA was used to analyze the expression of KIF5B and SFRP2 in progressive stages of pancreatic cancer. RESULTS: The EVome of co-cultured epithelial and stromal cells is different from individual cells with distinct protein compositions. EVs secreted from stromal and cancer cells cultures could not induce significant changes in Pre-Metastatic Niche (PMN) modulation, which was assessed by changes in the distant organ metastases. However, they did induce significant changes in the early microbiome, as indicated by differences in α and ß-diversities. KIF5B and SFRP2 show promise for early detection and investigation in progressive pancreatic cancer. These markers are expressed in all stages of pancreatic cancer such as low grade PanINs, advanced cancer, and in liver and soft tissue metastases. CONCLUSIONS: Proteomic characterization of EVs derived from mimicking conditions of epithelial and stromal cells in the tumor-microenvironment resulted in the identification of several proteins, some for the first time in EVs. These secreted EVs cannot induce changes in distant organ metastases in in vivo models of EV education, but modulate changes in the early murine microbiome. Among all the proteins that were analyzed (MMP3, KIF5B, SFRP2, and LOXL2), KIF5B and SFRP2 show promise as bona fide early pancreatic cancer biomarkers expressed in progressive stages of pancreatic cancer.


Asunto(s)
Cinesinas , Proteínas de la Membrana , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Biomarcadores de Tumor/metabolismo , Humanos , Metaloproteinasa 3 de la Matriz , Ratones , Neoplasias Pancreáticas/patología , Proteoma/metabolismo , Proteómica/métodos , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 13(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072942

RESUMEN

Tumor cells dissociate from the primary site and enter into systemic circulation (circulating tumor cells, CTCs) either alone or as tumor microemboli (clusters); the latter having an increased predisposition towards forming distal metastases than single CTCs. The formation of clusters is, in part, created by contacts between cell-cell junction proteins and/or cytokine receptor pairs with other cells such as neutrophils, platelets, fibroblasts, etc. In the present study, we provide evidence for an extravesicular (EV) mode of communication between pancreatic cancer CTCs and neutrophils. Our results suggest that the EV proteome of CTCs contain signaling proteins that can modulate degranulation and granule mobilization in neutrophils and, also, contain tissue plasminogen activator and other proteins that can regulate cluster formation. By exposing naïve neutrophils to EVs isolated from CTCs, we further show how these changes are modulated in a dynamic fashion indicating evidence for a deeper EV based remodulatory effect on companion cells in clusters.

11.
SLAS Technol ; 23(6): 493-506, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29945466

RESUMEN

Prior to the sequencing of the human genome, it was presumed that most of the DNA coded for proteins. However, with the advent of next-generation sequencing, it has now been recognized that most complex eukaryotic genomes are in fact transcribed into noncoding RNAs (ncRNAs), including a family of transcripts referred to as long noncoding RNAs (lncRNAs). LncRNAs have been implicated in many biological processes ranging from housekeeping functions such as transcription to more specialized functions such as dosage compensation or genomic imprinting, among others. Interestingly, lncRNAs are not limited to a defined set of functions but can regulate varied activities such as messenger RNA degradation, translation, and protein kinetics or function as RNA decoys or scaffolds. Although still in its infancy, research into the biology of lncRNAs has demonstrated the importance of lncRNAs in development and disease. However, the specific mechanisms through which these lncRNAs act remain poorly defined. Focused research into a small number of these lncRNAs has provided important clues into the heterogeneous nature of this family of ncRNAs. Due to the complex diversity of lncRNA function, in this review, we provide an update on the platforms available for investigators to aid in the identification of lncRNA function.


Asunto(s)
Eucariontes , Regulación de la Expresión Génica , ARN Largo no Codificante/metabolismo , Biología Molecular/métodos
12.
J Vis Exp ; (93): e52053, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25489864

RESUMEN

Combining RNA fluorescent in situ hybridization (FISH) with immunofluorescence (immuno-FISH) creates a technique that can be employed at the single cell level to detect the spatial dynamics of RNA localization with simultaneous insight into the localization of proteins, epigenetic modifications and other details which can be highlighted by immunofluorescence. X-chromosome inactivation is a paradigm for long non-coding RNA (lncRNA)-mediated gene silencing. X-inactive specific transcript (Xist) lncRNA accumulation (called an Xist cloud) on one of the two X-chromosomes in mammalian females is a critical step to initiate X-chromosome inactivation. Xist RNA directly or indirectly interacts with various chromatin-modifying enzymes and introduces distinct epigenetic landscapes to the inactive X-chromosome (Xi). One known epigenetic hallmark of the Xi is the Histone H3 trimethyl-lysine 27 (H3K27me3) modification. Here, we describe a simple and quick immuno-FISH protocol for detecting Xist RNA using RNA FISH with multiple oligonucleotide probes coupled with immunofluorescence of H3K27me3 to examine the localization of Xist RNA and associated epigenetic modifications. Using oligonucleotide probes results in a shorter incubation time and more sensitive detection of Xist RNA compared to in vitro transcribed RNA probes (riboprobes). This protocol provides a powerful tool for understanding the dynamics of lncRNAs and its associated epigenetic modification, chromatin structure, nuclear organization and transcriptional regulation.


Asunto(s)
Histonas/genética , Hibridación Fluorescente in Situ/métodos , ARN Largo no Codificante/genética , Inactivación del Cromosoma X , Cromosoma X , Animales , Células Madre Embrionarias , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Histonas/química , Ratones , ARN Largo no Codificante/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA