Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Nature ; 585(7826): 569-573, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32846426

RESUMEN

Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Inmunidad de la Planta , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 119(13): e2200099119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35324326

RESUMEN

SignificanceOscillations in intracellular calcium concentration play an essential role in the regulation of multiple cellular processes. In plants capable of root endosymbiosis with nitrogen-fixing bacteria and/or arbuscular mycorrhizal fungi, nuclear localized calcium oscillations are essential to transduce the microbial signal. Although the ion channels required to generate the nuclear localized calcium oscillations have been identified, their mechanisms of regulation are unknown. Here, we combined proteomics and engineering approaches to demonstrate that the calcium-bound form of the calmodulin 2 (CaM2) associates with CYCLIC NUCLEOTIDE GATED CHANNEL 15 (CNGC15s), closing the channels and providing the negative feedback to sustain the oscillatory mechanism. We further unraveled that the engineered CaM2 accelerates early endosymbioses and enhanced root nodule symbiosis but not arbuscular mycorrhization.


Asunto(s)
Fabaceae , Micorrizas , Calcio , Señalización del Calcio/fisiología , Micorrizas/fisiología , Simbiosis
4.
J Exp Bot ; 74(8): 2572-2584, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36715622

RESUMEN

Calcium release to the nucleoplasm of root meristem cells was demonstrated to modulate root development. The calcium channel encoded by cyclic nucleotide-gated channel (CNGC) 15 localizes at the nuclear envelope in young Arabidopsis seedlings. In contrast, at later stages of root growth, overexpression analysis showed that AtCNGC15 can relocalize to the plasma membrane to mediate primary nitrate-induced gene expression. This raises the question as to whether nuclear localized AtCNGC15 is required for root apical meristem development in young Arabidopsis seedlings, and whether nitrate signalling occurs independently of nuclear localized AtCNGC15 at this developmental stage. In this study, we characterize a novel mutant allele of AtCNGC15 and demonstrate that the mutation of a highly conserved aspartic acid in the C-linker domain is sufficient to impair the gating of AtCNCG15. We demonstrate that AtCNGC15 mediates the nuclear calcium release that modulates root apical meristem development and nitrate-induced LBD39 expression. We also show that, in the presence of nitrate, the relocalization of AtCNGC15 at the plasma membrane occurs specifically in the columella cells. Our results further suggest that the induction of LBD37, LBD38, and LBD39 in the presence of nitrate is modulated by different inputs of cytoplasmic or nuclear calcium release.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Plantones
5.
New Phytol ; 227(2): 343-351, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32012282

RESUMEN

Loss of barley Mildew Resistance Locus O (MLO) is known to confer durable and robust resistance to powdery mildew (Blumeria graminis), a biotrophic fungal leaf pathogen. Based on the increased expression of MLO in mycorrhizal roots and its presence in a clade of the MLO family that is specific to mycorrhizal-host species, we investigated the potential role of MLO in arbuscular mycorrhizal interactions. Using mutants from barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula, we demonstrate a role for MLO in colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Early mycorrhizal colonization was reduced in mlo mutants of barley, wheat, and M. truncatula, and this was accompanied by a pronounced decrease in the expression of many of the key genes required for intracellular accommodation of arbuscular mycorrhizal fungi. These findings show that clade IV MLOs are involved in the establishment of symbiotic associations with beneficial fungi, a role that has been appropriated by powdery mildew.


Asunto(s)
Hordeum , Magnoliopsida , Micorrizas , Ascomicetos , Hongos , Hordeum/genética , Enfermedades de las Plantas , Proteínas de Plantas/genética
6.
Plant Physiol ; 179(2): 491-506, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30530738

RESUMEN

Nuclear movement is involved in cellular and developmental processes across eukaryotic life, often driven by Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes, which bridge the nuclear envelope (NE) via the interaction of Klarsicht/ANC-1/Syne-1 Homology (KASH) and Sad1/UNC-84 (SUN) proteins. Arabidopsis (Arabidopsis thaliana) LINC complexes are involved in nuclear movement and positioning in several cell types. Observations since the 1950s have described targeted nuclear movement and positioning during symbiosis initiation between legumes and rhizobia, but it has not been established whether these movements are functional or incidental. Here, we identify and characterize LINC complexes in the model legume Medicago truncatula We show that LINC complex characteristics such as NE localization, dependence of KASH proteins on SUN protein binding for NE enrichment, and direct SUN-KASH binding are conserved between plant species. Using a SUN dominant-negative strategy, we demonstrate that LINC complexes are necessary for proper nuclear shaping and movement in Medicago root hairs, and are important for infection thread initiation and nodulation.


Asunto(s)
Medicago/fisiología , Complejos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/fisiología , Actinas/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Medicago/citología , Complejos Multiproteicos/genética , Matriz Nuclear/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Mapas de Interacción de Proteínas , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Nicotiana/genética , Nicotiana/metabolismo
7.
J Exp Bot ; 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29718301

RESUMEN

The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.

8.
Plant Physiol ; 166(4): 2077-90, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25293963

RESUMEN

Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB'1. Mutations in PP2AB'1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB'1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB'1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Micorrizas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteína Fosfatasa 2/metabolismo , Señalización del Calcio , Genes Reporteros , Medicago truncatula/genética , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Proteína Fosfatasa 2/genética , Simbiosis
9.
Curr Biol ; 34(10): 2212-2220.e7, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642549

RESUMEN

The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.


Asunto(s)
Evolución Biológica , Señalización del Calcio , Marchantia , Medicago truncatula , Micorrizas , Simbiosis , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Medicago truncatula/genética , Micorrizas/fisiología , Marchantia/metabolismo , Marchantia/genética , Marchantia/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Embryophyta/metabolismo , Embryophyta/fisiología , Núcleo Celular/metabolismo
10.
Hortic Res ; 11(1): uhad256, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269294

RESUMEN

Podosphaera xanthii is the main causal agent of powdery mildew (PM) on Cucurbitaceae. In Cucumis melo, the Pm-w resistance gene, which confers resistance to P. xanthii, is located on chromosome 5 in a cluster of nucleotide-binding leucine-rich repeat receptors (NLRs). We used positional cloning and transgenesis, to isolate the Pm-wWMR 29 gene encoding a coiled-coil NLR (CC-NLR). Pm-wWMR 29 conferred high level of resistance to race 1 of PM and intermediate level of resistance to race 3 of PM. Pm-wWMR 29 turned out to be a homolog of the Aphis gossypii resistance gene Vat-1PI 161375. We confirmed that Pm-wWMR 29 did not confer resistance to aphids, while Vat-1PI 161375 did not confer resistance to PM. We showed that both homologs were included in a highly diversified cluster of NLRs, the Vat cluster. Specific Vat-1PI 161375 and Pm-wWMR 29 markers were present in 10% to 13% of 678 accessions representative of wild and cultivated melon types worldwide. Phylogenic reconstruction of 34 protein homologs of Vat-1PI 161375 and Pm-wWMR 29 identified in 24 melon accessions revealed an ancestor with four R65aa-a specific motif in the LRR domain, evolved towards aphid and virus resistance, while an ancestor with five R65aa evolved towards PM resistance. The complexity of the cluster comprising the Vat/Pm-w genes and its diversity in melon suggest that Vat homologs may contribute to the recognition of a broad range of yet to be identified pests and pathogens.

11.
Plant Physiol ; 160(4): 2137-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23071252

RESUMEN

Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by microRNAs (miRNAs). Here, we used deep-sequencing, candidate-based expression studies and a selection of Lotus japonicus mutants uncoupling different symbiosis stages to identify miRNAs involved in symbiotic nitrogen fixation. Induction of a noncanonical miR171 isoform, which targets the key nodulation transcription factor Nodulation Signaling Pathway2, correlates with bacterial infection in nodules. A second candidate, miR397, is systemically induced in the presence of active, nitrogen-fixing nodules but not in that of noninfected or inactive nodule organs. It is involved in nitrogen fixation-related copper homeostasis and targets a member of the laccase copper protein family. These findings thus identify two miRNAs specifically responding to symbiotic infection and nodule function in legumes.


Asunto(s)
Lotus/genética , Lotus/microbiología , MicroARNs/metabolismo , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Secuencia de Bases , Bradyrhizobium/fisiología , Cobre/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genes de Plantas/genética , Homeostasis/genética , Lacasa/genética , MicroARNs/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Especificidad de la Especie , Simbiosis/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
12.
Plant Physiol ; 160(4): 2300-10, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23027664

RESUMEN

Legumes form symbioses with rhizobial bacteria and arbuscular mycorrhizal fungi that aid plant nutrition. A critical component in the establishment of these symbioses is nuclear-localized calcium (Ca(2+)) oscillations. Different components on the nuclear envelope have been identified as being required for the generation of the Ca(2+) oscillations. Among these an ion channel, Doesn't Make Infections1, is preferentially localized on the inner nuclear envelope and a Ca(2+) ATPase is localized on both the inner and outer nuclear envelopes. Doesn't Make Infections1 is conserved across plants and has a weak but broad similarity to bacterial potassium channels. A possible role for this cation channel could be hyperpolarization of the nuclear envelope to counterbalance the charge caused by the influx of Ca(2+) into the nucleus. Ca(2+) channels and Ca(2+) pumps are needed for the release and reuptake of Ca(2+) from the internal store, which is hypothesized to be the nuclear envelope lumen and endoplasmic reticulum, but the release mechanism of Ca(2+) remains to be identified and characterized. Here, we develop a mathematical model based on these components to describe the observed symbiotic Ca(2+) oscillations. This model can recapitulate Ca(2+) oscillations, and with the inclusion of Ca(2+)-binding proteins it offers a simple explanation for several previously unexplained phenomena. These include long periods of frequency variation, changes in spike shape, and the initiation and termination of oscillations. The model also predicts that an increase in buffering capacity in the nucleoplasm would cause a period of rapid oscillations. This phenomenon was observed experimentally by adding more of the inducing signal.


Asunto(s)
Señalización del Calcio , Medicago truncatula/metabolismo , Simbiosis/fisiología , Tampones (Química) , Calcio/metabolismo , Simulación por Computador , Cinética , Modelos Biológicos , Reproducibilidad de los Resultados
13.
Plant J ; 65(2): 244-52, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21223389

RESUMEN

Intracellular invasion of root cells is required for the establishment of successful endosymbioses in legumes of both arbuscular mycorrhizal (AM) fungi and rhizobial bacteria. In both interactions a requirement for successful entry is the activation of a common signalling pathway that includes five genes required to generate calcium oscillations and two genes required for the perception of the calcium response. Recently, it has been discovered that in Medicago truncatula, the Vapyrin (VPY) gene is essential for the establishment of the arbuscular mycorrhizal symbiosis. Here, we show by analyses of mutants that the same gene is also required for rhizobial colonization and nodulation. VPY encodes a protein featuring a Major Sperm Protein domain, typically featured on proteins involved in membrane trafficking and biogenesis, and a series of ankyrin repeats. Plants mutated in this gene have abnormal rhizobial infection threads and fewer nodules, and in the case of interactions with AM fungi, epidermal penetration defects and aborted arbuscule formation. Calcium spiking in root hairs in response to supplied Nod factors is intact in the vpy-1 mutant. This, and the elevation of VPY transcripts upon application of Nod factors which we show to be dependent on NFP, DMI1, and DMI3, indicates that VPY acts downstream of the common signalling pathway.


Asunto(s)
Medicago truncatula/fisiología , Micorrizas/fisiología , Proteínas Nucleares/fisiología , Proteínas de Plantas/fisiología , Nodulación de la Raíz de la Planta , Simbiosis , Proteínas de Transporte Vesicular/fisiología , Secuencia de Aminoácidos , Señalización del Calcio/fisiología , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glomeromycota/fisiología , Medicago truncatula/genética , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Nucleares/genética , Fenotipo , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , Transducción de Señal , Sinorhizobium meliloti/fisiología , Proteínas de Transporte Vesicular/genética
14.
Nature ; 433(7025): 527-31, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15616514

RESUMEN

The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Plastidios/metabolismo , Simbiosis/fisiología , Alelos , Secuencia de Aminoácidos , Señalización del Calcio , ADN Complementario/genética , Genes de Plantas/genética , Lotus/citología , Lotus/genética , Lotus/microbiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plastidios/genética , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Plant Physiol ; 151(3): 1281-91, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19641028

RESUMEN

We have established tools for forward and reverse genetic analysis of the legume Lotus (Lotus japonicus). A structured population of M2 progeny of 4,904 ethyl methanesulfonate-mutagenized M1 embryos is available for single nucleotide polymorphism mutation detection, using a TILLING (for Targeting Induced Local Lesions IN Genomes) protocol. Scanning subsets of this population, we identified a mutation load of one per 502 kb of amplified fragment. Moreover, we observed a 1:10 ratio between homozygous and heterozygous mutations in the M2 progeny. This reveals a clear difference in germline genetics between Lotus and Arabidopsis (Arabidopsis thaliana). In addition, we assembled M2 siblings with obvious phenotypes in overall development, starch accumulation, or nitrogen-fixing root nodule symbiosis in three thematic subpopulations. By screening the nodulation-defective population of M2 individuals for mutations in a set of 12 genes known to be essential for nodule development, we identified large allelic series for each gene, generating a unique data set that combines genotypic and phenotypic information facilitating structure-function studies. This analysis revealed a significant bias for replacements of glycine (Gly) residues in functionally defective alleles, which may be explained by the exceptional structural features of Gly. Gly allows the peptide chain to adopt conformations that are no longer possible after amino acid replacement. This previously unrecognized vulnerability of proteins at Gly residues could be used for the improvement of algorithms that are designed to predict the deleterious nature of single nucleotide polymorphism mutations. Our results demonstrate the power, as well as the limitations, of ethyl methanesulfonate mutagenesis for forward and reverse genetic studies. (Original mutant phenotypes can be accessed at http://data.jic.bbsrc.ac.uk/cgi-bin/lotusjaponicus Access to the Lotus TILLING facility can be obtained through http://www.lotusjaponicus.org or http://revgenuk.jic.ac.uk).


Asunto(s)
Metanosulfonato de Etilo/farmacología , Lotus/genética , Mutagénesis , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Alelos , Arabidopsis/genética , ADN de Plantas/genética , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Datos de Secuencia Molecular , Mutación , Fenotipo
17.
Nat Commun ; 10(1): 4865, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653864

RESUMEN

In plants, nuclear Ca2+ releases are essential to the establishment of nitrogen-fixing and phosphate-delivering arbuscular mycorrhizal endosymbioses. In the legume Medicago truncatula, these nuclear Ca2+ signals are generated by a complex of nuclear membrane-localised ion channels including the DOES NOT MAKE INFECTIONS 1 (DMI1) and the cyclic nucleotide-gated channels (CNGC) 15s. DMI1 and CNCG15s are conserved among land plants, suggesting roles for nuclear Ca2+ signalling that extend beyond symbioses. Here we show that nuclear Ca2+ signalling initiates in the nucleus of Arabidopsis root cells and that these signals are correlated with primary root development, including meristem development and auxin homeostasis. In addition, we demonstrate that altering genetically AtDMI1 is sufficient to modulate the nuclear Ca2+ signatures, and primary root development. This finding supports the postulate that stimulus-specific information can be encoded in the frequency and duration of a Ca2+ signal and thereby regulate cellular function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Núcleo Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Meristema/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
18.
Front Plant Sci ; 9: 245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535753

RESUMEN

Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.

19.
Nucleus ; 8(1): 2-10, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27715428

RESUMEN

The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled "Dynamic Organization of the Nucleus" at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.


Asunto(s)
Núcleo Celular/metabolismo , Animales , Cromatina/metabolismo , Genoma/genética , Humanos , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Células Vegetales/metabolismo
20.
Mol Plant Microbe Interact ; 19(1): 80-91, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16404956

RESUMEN

Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas/genética , Lotus/genética , Simbiosis/genética , Alelos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Repeticiones de Microsatélite , Mutación/genética , Fenotipo , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA