Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioorg Med Chem ; 45: 116313, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34325324

RESUMEN

The [3.3.0]furofuranone structure is found in numerous families of biologically active natural products. We took advantage of the stereodiversity afforded by carbohydrate derivatives to prepare several compounds structurally similar to goniofufurone and crassalactones which are natural cytotoxic agents. We designed and synthesized several stereoisomers of these natural compounds via lactonization of C-glycosyl compounds bearing an hydroxyl on position 4 and a methyl ester on the pseudo-anomeric positionThe reactivity of this bicyclic moiety was explored through etherification of hydroxyls in position 5 and 7 and various substituants (halogen, phenyl, benzyl, cynanmoyl) were introduced. The anti-proliferative properties of these mimics were then evaluated on various cancer cell lines and two compounds 24 and 35 demonstrated IC50 value of 1.34 µM (U251) and 7.60 µM (U87) respectively.


Asunto(s)
Antineoplásicos/farmacología , Furanos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Furanos/síntesis química , Furanos/química , Humanos , Masculino , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
2.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540386

RESUMEN

Ultrasmall polyaminocarboxylate-coated gold nanoparticles (NPs), Au@DTDTPA and Au@TADOTAGA, that have been recently developed exhibit a promising potential for image-guided radiotherapy. In order to render the radiosensitizing effect of these gold nanoparticles even more efficient, the study of their localization in cells is required to better understand the relation between the radiosensitizing properties of the agents and their localization in cells and in tumors. To achieve this goal, post-functionalization of Au@DTDTPA nanoparticles by near-infrared (NIF) organic dyes (aminated derivative of cyanine 5, Cy5-NH2) was performed. The immobilization of organic Cy5-NH2 dyes onto the gold nanoparticles confers to these radiosensitizers fluorescence properties which can be exploited for monitoring their internalization in cancerous cells, for determining their localization in cells by fluorescence microscopy (a common and powerful imaging tool in biology), and for following up on their accumulation in tumors after intravenous injection.


Asunto(s)
Carbocianinas/análisis , Colorantes Fluorescentes/análisis , Oro/análisis , Nanopartículas del Metal/análisis , Neoplasias/diagnóstico por imagen , Fármacos Sensibilizantes a Radiaciones/análisis , Animales , Carbocianinas/administración & dosificación , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/administración & dosificación , Oro/administración & dosificación , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/ultraestructura , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Poliaminas/análisis , Fármacos Sensibilizantes a Radiaciones/administración & dosificación
3.
Bioorg Med Chem ; 24(21): 5315-5325, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27622745

RESUMEN

Neuropilin-1 (NRP-1), a transmembrane glycoprotein acting as a co-receptor of VEGF-A, is expressed by cancer and angiogenic endothelial cells and is involved in the angiogenesis process. Taking advantage of functionalities and stereodiversities of sugar derivatives, the design and the synthesis of carbohydrate based peptidomimetics are here described. One of these compounds (56) demonstrated inhibition of VEGF-A165 binding to NRP-1 (IC50=39µM) and specificity for NRP-1 over VEGF-R2. Biological evaluations were performed on human umbilical vein endothelial cells (HUVECs) through activation of downstream proteins (AKT and ERK phosphorylation), viability/proliferation assays and in vitro measurements of anti-angiogenic abilities.


Asunto(s)
Carbohidratos/farmacología , Simulación del Acoplamiento Molecular , Neuropilina-1/antagonistas & inhibidores , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Carbohidratos/síntesis química , Carbohidratos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Estructura Molecular , Peptidomiméticos/química , Relación Estructura-Actividad
4.
Int J Nanomedicine ; 18: 6545-6562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965282

RESUMEN

Purpose: The tumor microenvironment (TME) is composed of various stromal components, including immune cells such as tumor-associated macrophages (TAMs), which play a crucial role in cancer initiation and progression. TAMs can exhibit either a tumor-suppressive M1 or a tumor-promoting M2 phenotype. First, we aimed to develop a 3D human heterotypic model consisting of head and neck squamous cell carcinoma (HNSCC) cells and different subtypes of macrophages to replicate the interactions between immune cells and cancer cells. We further investigated the behavior of Foslip®, a liposomal formulation of temoporfin, using a macrophage-enriched 3D model. Methods: Monocytes were differentiated into M1 and M2 macrophages, which represent two distinct subtypes. Following histological and molecular characterization, these macrophages were used to establish a 3D spheroid model of HNSCC enriched with either polarized macrophages or conditioned media. Flow cytometry and fluorescence microscopy were used to assess the accumulation and distribution of Foslip®. The cytotoxic effect of Foslip®-mediated photodynamic therapy (PDT) was evaluated using flow cytometry. Results: We developed heterotypic spheroids characterized by a mixed phenotype of evenly distributed macrophages. In this 3D co-culture model, both M1 and M2 macrophages showed significantly higher accumulation of Foslip® compared to the cancer cells. Although this differential accumulation did not drastically affect the overall PDT efficiency, spheroids generated with conditioned media exhibited a significant enhancement in photo-induced cell death, suggesting that the microenvironment could modulate the response to Foslip®-PDT. Conclusion: 3D models of HNSCC cells and macrophages provide valuable insights into the complex response of HNSCC cells to PDT using Foslip® in vitro. This model can be used to screen immunomodulatory nanomedicines targeting TAMs in solid head and neck tumors, either alone or in combination with standard therapies.


Asunto(s)
Neoplasias de Cabeza y Cuello , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Medios de Cultivo Condicionados/farmacología , Macrófagos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Línea Celular Tumoral
5.
Macromol Biosci ; 23(3): e2200434, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448191

RESUMEN

Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture. However, this technology is still poorly investigated to model ovarian tumors. In this study, a 3D bioprinted ovarian tumor model combining cancer cells (SKOV-3) and cancer associated fibroblasts (CAFs) are described. The resulting tumor models show their ability to maintain cell viability and proliferation. Cells are observed to self-assemble in heterotypic aggregates. Moreover, CAFs are observed to be recruited and to circle cancer cells reproducing an in vivo process taking place in the tumor microenvironment. Interestingly, this approach also shows its ability to rapidly generate a high number of reproducible tumor models that can be subjected to usual characterizations (cell viability and metabolic activity; histology and immunological studies; and real-time imaging). Therefore, these ovarian tumor models can be an interesting tool for high throughput drug screening applications.


Asunto(s)
Bioimpresión , Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Femenino , Humanos , Técnicas de Cocultivo , Fibroblastos Asociados al Cáncer/patología , Neoplasias Ováricas/patología , Línea Celular Tumoral , Esferoides Celulares/patología , Microambiente Tumoral
6.
Pharmaceutics ; 15(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36986856

RESUMEN

Glioblastoma (GBM) is the most difficult brain cancer to treat, and photodynamic therapy (PDT) is emerging as a complementary approach to improve tumor eradication. Neuropilin-1 (NRP-1) protein expression plays a critical role in GBM progression and immune response. Moreover, various clinical databases highlight a relationship between NRP-1 and M2 macrophage infiltration. In order to induce a photodynamic effect, multifunctional AGuIX®-design nanoparticles were used in combination with a magnetic resonance imaging (MRI) contrast agent, as well as a porphyrin as the photosensitizer molecule and KDKPPR peptide ligand for targeting the NRP-1 receptor. The main objective of this study was to characterize the impact of macrophage NRP-1 protein expression on the uptake of functionalized AGuIX®-design nanoparticles in vitro and to describe the influence of GBM cell secretome post-PDT on the polarization of macrophages into M1 or M2 phenotypes. By using THP-1 human monocytes, successful polarization into the macrophage phenotypes was argued via specific morphological traits, discriminant nucleocytoplasmic ratio values, and different adhesion abilities based on real-time cell impedance measurements. In addition, macrophage polarization was confirmed via the transcript-level expression of TNFα, CXCL10, CD-80, CD-163, CD-206, and CCL22 markers. In relation to NRP-1 protein over-expression, we demonstrated a three-fold increase in functionalized nanoparticle uptake for the M2 macrophages compared to the M1 phenotype. The secretome of the post-PDT GBM cells led to nearly a three-fold increase in the over-expression of TNFα transcripts, confirming the polarization to the M1 phenotype. The in vivo relationship between post-PDT efficiency and the inflammatory effects points to the extensive involvement of macrophages in the tumor zone.

7.
Int J Nanomedicine ; 18: 243-261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660336

RESUMEN

Purpose: This study aimed to evaluate the radiosensitizing potential of Au@DTDTPA(Gd) nanoparticles when combined with conventional external X-ray irradiation (RT) to treat GBM. Methods: Complementary biological models based on U87 spheroids including conventional 3D invasion assay, organotypic brain slice cultures, chronic cranial window model were implemented to investigate the impact of RT treatments (10 Gy single dose; 5×2 Gy or 2×5 Gy) combined with Au@DTDTPA(Gd) nanoparticles on tumor progression. The main tumor mass and its infiltrative area were analyzed. This work focused on the invading cancer cells after irradiation and their viability, aggressiveness, and recurrence potential were assessed using mitotic catastrophe quantification, MMP secretion analysis and neurosphere assays, respectively. Results: In vitro clonogenic assays showed that Au@DTDTPA(Gd) nanoparticles exerted a radiosensitizing effect on U87 cells, and in vivo experiments suggested a benefit of the combined treatment "RT 2×5 Gy + Au@DTDTPA(Gd)" compared to RT alone. Invasion assays revealed that invasion distance tended to increase after irradiation alone, while the combined treatments were able to significantly reduce tumor invasion. Monitoring of U87-GFP tumor progression using organotypic cultures or intracerebral grafts confirmed the anti-invasive effect of Au@DTDTPA(Gd) on irradiated spheroids. Most importantly, the combination of Au@DTDTPA(Gd) with irradiation drastically reduced the number, the viability and the aggressiveness of tumor cells able to escape from U87 spheroids. Notably, the combined treatments significantly reduced the proportion of escaped cells with stem-like features that could cause recurrence. Conclusion: Combining Au@DTDTPA(Gd) nanoparticles and X-ray radiotherapy appears as an attractive therapeutic strategy to decrease number, viability and aggressiveness of tumor cells that escape and can invade the surrounding brain parenchyma. Hence, Au@DTDTPA(Gd)-enhanced radiotherapy opens up interesting perspectives for glioblastoma treatment.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Humanos , Oro/farmacología , Glioblastoma/radioterapia , Gadolinio , Línea Celular Tumoral , Nanopartículas del Metal/uso terapéutico , Medios de Contraste , Quelantes
8.
Nanoscale ; 13(20): 9236-9251, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33977943

RESUMEN

Glioblastoma are characterized by an invasive phenotype, which is thought to be responsible for recurrences and the short overall survival of patients. In the last decade, the promising potential of ultrasmall gadolinium chelate-coated gold nanoparticles (namely Au@DTDTPA(Gd)) was evidenced for image-guided radiotherapy in brain tumors. Considering the threat posed by invasiveness properties of glioma cells, we were interested in further investigating the biological effects of Au@DTDTPA(Gd) by examining their impact on GBM cell migration and invasion. In our work, exposure of U251 glioma cells to Au@DTDTPA(Gd) led to high accumulation of gold nanoparticles, that were mainly diffusely distributed in the cytoplasm of the tumor cells. Experiments pointed out a significant decrease in glioma cell invasiveness when exposed to nanoparticles. As the proteolysis activities were not directly affected by the intracytoplasmic accumulation of Au@DTDTPA(Gd), the anti-invasive effect cannot be attributed to matrix remodeling impairment. Rather, Au@DTDTPA(Gd) nanoparticles affected the intrinsic biomechanical properties of U251 glioma cells, such as cell stiffness, adhesion and generated traction forces, and significantly reduced the formation of protrusions, thus exerting an inhibitory effect on their migration capacities. Consistently, analysis of talin-1 expression and membrane expression of beta 1 integrin evoke the stabilization of focal adhesion plaques in the presence of nanoparticles. Taken together, our results highlight the interest in Au@DTDTPA(Gd) nanoparticles for the therapeutic management of astrocytic tumors, not only as a radio-enhancing agent but also by reducing the invasive potential of glioma cells.


Asunto(s)
Glioma , Nanopartículas del Metal , Línea Celular Tumoral , Gadolinio , Glioma/tratamiento farmacológico , Oro , Humanos , Nanopartículas del Metal/toxicidad , Invasividad Neoplásica
9.
Int J Nanomedicine ; 15: 8739-8758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223826

RESUMEN

BACKGROUND: Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). METHODS: The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. RESULTS: The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 µM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. CONCLUSION: Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.


Asunto(s)
Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Terapia Molecular Dirigida , Nanopartículas/química , Neuropilina-1/metabolismo , Fotoquimioterapia , Nanomedicina Teranóstica/métodos , Animales , Células Endoteliales/metabolismo , Gadolinio/química , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Metástasis de la Neoplasia , Porfirinas/química , Medicina de Precisión , Ratas , Distribución Tisular
10.
Radiat Res ; 192(1): 13-22, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31021734

RESUMEN

In recent years, the use of gold-based nanoparticles in radiotherapy has been extensively studied, and the associated radiosensitization mechanism has been evaluated in a variety of in vitro studies. Given that mitotic catastrophe is widely involved in radiation-induced cell death, we evaluated the effect of gold nanoparticles on this key event. Most of the methods currently used to visualize and quantify morphological changes and multinucleation are manual. To circumvent this time-consuming step, we developed and optimized an image processing workflow (based on freely accessible software and plugins) for the automated quantification of mitotic catastrophes. We validated this approach in three cell lines by comparing the number of radiation-induced mitotic catastrophes detected using the automated and manual methods in the presence and absence of nanoparticles. With the Bland-Altman analysis, the automated and manual counting methods were found to be fully interchangeable. The ultimate goal of this work was to determine whether mitotic catastrophe was critically involved in radiationinduced cell death after prior exposure to gold nanoparticles. In the radioresistant U87 cell line, exposure to gold nanoparticles was associated with a shorter time course for the events related to mitotic catastrophe, which peaked at 96 h postirradiation. Mitotic catastrophe was dose-dependent in both the presence and absence of gold nanoparticles. These results demonstrate that cell exposure to gold nanoparticles led to an increase in mitotic catastrophe events, and confirm the marked radiosensitizing effect observed in clonogenic assays.


Asunto(s)
Oro/química , Oro/farmacología , Procesamiento de Imagen Asistido por Computador , Nanopartículas del Metal/química , Mitosis/efectos de los fármacos , Mitosis/efectos de la radiación , Flujo de Trabajo , Automatización , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Humanos , Cinética , Microscopía
11.
Oncotarget ; 9(20): 15312-15325, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29632646

RESUMEN

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains important. The neuropilin-1 (NRP-1) receptor has recently been implicated in tumor progression of MB, which seems to play an important role in the phenotype of cancer stem cells. Targeting this receptor appears as an interesting strategy to promote MB stem cells differentiation. Cancer stem-like cells of 3 MB cell lines (DAOY, D283-Med and D341-Med), classified in the more pejorative molecular subgroups, were obtained by in vitro enrichment. These models were characterized by an increase of NRP-1 and cancer stem cell markers (CD15, CD133 and Sox2), meanwhile a decrease of the differentiated cell marker Neurofilament-M (NF-M) was observed. Our previous work investigated potential innovative peptidomimetics that specifically target NRP-1 and showed that MR438 had a good affinity for NRP-1. This small molecule decreased the self-renewal capacity of MB stem cells for the 3 cell lines and reduced the invasive ability of DAOY and D283 stem cells while NRP-1 expression and cancer stem cell markers decreased at the same time. Possible molecular mechanisms were explored and showed that the activation of PI3K/AKT and MAPK pathways significantly decreased for DAOY cells after treatment. Finally, our results highlighted that targeting NRP-1 with MR438 could be a potential new strategy to differentiate MB stem cells and could limit medulloblastoma progression.

12.
Int J Nanomedicine ; 11: 6169-6179, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27920524

RESUMEN

This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.


Asunto(s)
Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Método de Montecarlo , Nanopartículas/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Simulación por Computador , Humanos , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanoestructuras/química , Distribución Tisular , Células Tumorales Cultivadas
13.
Life Sci ; 137: 74-80, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26239438

RESUMEN

AIMS: Glioma initiating cells (GICs) represent a subpopulation of tumor cells endowed with self-renewal and multilineage differentiation capacity but also with innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in glioma patients. MATERIALS AND METHODS: In this work, GICs were obtained from two patient-derived high-grade gliomas xenograft model, expressing differently EGFR. GICs were exposed to anti-EGFR monoclonal antibody cetuximab during 48h in 1% or 21% oxygen tension. Cell viability and self-renewal capacity were then evaluated as well as their angiogenic properties. KEY FINDINGS: GICs were sensitive to cetuximab only in normoxic condition whatever the EGFR status. Nevertheless, under hypoxia cetuximab was able to decrease the self-renewal capacity as well as the expression of CD133 while expression of GFAP increased. Moreover, cetuximab decreased the effect of GICs on endothelial cell migration under hypoxia. SIGNIFICANCE: Consequently, anti-EGFR therapy can be envisaged to target specifically GICs in order to limit the tumor recurrence.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Cetuximab/farmacología , Receptores ErbB/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Glioma/patología , Células Madre Neoplásicas/efectos de los fármacos , Moduladores de la Angiogénesis/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Receptores ErbB/inmunología , Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioma/metabolismo , Humanos , Células Tumorales Cultivadas
14.
PLoS One ; 8(7): e68333, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874590

RESUMEN

In high-grade gliomas, the identification of patients that could benefit from EGFR inhibitors remains a challenge, hindering the use of these agents. Using xenografts models, we evaluated the antitumor effect of the combined treatment "gefitinib + radiotherapy" and aimed to identify the profile of responsive tumors. Expression of phosphorylated proteins involved in the EGFR-dependent signaling pathways was analyzed in 10 glioma models. We focused on three models of anaplastic oligodendrogliomas (TCG2, TCG3 and TCG4) harboring high levels of phospho-EGFR, phospho-AKT and phospho-MEK1. They were treated with gefitinib (GEF 75 mg/kg/day x 5 days/week, for 2 weeks) and/or fractionated radiotherapy (RT: 5x2Gy/week for 2 weeks). Our results showed that GEF and/or RT induced significant tumor growth delays. However, only the TCG3 xenografts were highly responsive to the combination GEF+RT, with ∼50% of tumor cure. Phosphoproteins analysis five days after treatment onset demonstrated in TCG3 xenografts, but not in TCG2 model, that the EGFR-dependent pathways were inhibited after GEF treatment. Moreover, TCG3-bearing mice receiving GEF monotherapy exhibited a transient beneficial therapeutic response, rapidly followed by tumor regrowth, along with a major vascular remodeling. Taken together, our data evoked an "EGFR-addictive" behavior for TCG3 tumors. This study confirms that combination of gefitinib with fractionated irradiation could be a potent therapeutic strategy for anaplastic oligodendrogliomas harboring EGFR abnormalities but this treatment seems mainly beneficial for "EGFR-addictive" tumors. Unfortunately, neither the usual molecular markers (EGFR amplification, PTEN loss) nor the basal overexpression of phosphoproteins were useful to distinguish this responsive tumor. Evaluating the impact of TKIs on the EGFR-dependent pathways during the treatment might be more relevant, and requires further validation.


Asunto(s)
Quimioradioterapia/métodos , Receptores ErbB/metabolismo , Oligodendroglioma/tratamiento farmacológico , Oligodendroglioma/radioterapia , Quinazolinas/uso terapéutico , Transducción de Señal/fisiología , Animales , Terapia Combinada/métodos , Fraccionamiento de la Dosis de Radiación , Femenino , Gefitinib , Humanos , Inmunoensayo , Inmunohistoquímica , Ratones , Fosfoproteínas/metabolismo , Quinazolinas/farmacología , Estadísticas no Paramétricas , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA