Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639743

RESUMEN

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

2.
Inorg Chem ; 60(7): 4218-4225, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33356200

RESUMEN

Metal heteroanionic materials, such as oxyhalides, are promising photocatalysts in which band positions can be engineered for visible-light absorption by changing the halide identity. Advancing the synthesis of these materials, bismuth oxyhalides of the form BiOX (X = Cl, Br) have been prepared using rapid and scalable ultrasonic spray synthesis (USS). Central to this advance was the identification of small organohalide molecules as halide sources. When these precursors are spatially and temporally confined in the aerosol phase with molten salt fluxes, powders composed of single-crystalline BiOX nanoplates can be produced continuously. A mechanism highlighting the in situ generation of halide ions is proposed. These materials can be used as photocatalysts and provide proof-of-concept toward USS as a route to more complex bismuth oxyhalide materials.

3.
Nanoscale ; 14(17): 6471-6479, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35416234

RESUMEN

Traditional colloidal syntheses of metal nanoparticles (NPs) are highly sensitive to the selection of and quality of chemical reducing agents and metal precursors. To address these challenges, we demonstrate the complete sonoelectrochemical synthesis of monodisperse metal NPs starting from bulk metal, using Cu as a model system. Electrochemical syntheses of NPs are of great interest as the oxidation and reduction processes that account for product formation can occur directly at the anode and cathode, respectively. This ability has the potential to improve reproducibility by simplifying the chemical pathway to NPs, with electrosyntheses often also providing unique kinetic pathways toward green product formation. Herein, ultrasound is coupled with electrosynthesis to clean the electrode surface, dispersing the NPs produced at the electrode into solution. We were able to shift the size distribution to form monodispersed metal NPs through control of applied potential (Vapplied) and ultrasonic pulses. The synthesis begins with electrooxidation of bulk Cu metal to directly dissolve metal ions into a microemulsion system. This step is followed by sonoelectroreduction of the ions, which facilitates the formation of dispersible, monodisperse Cu NPs with diameters <10 nm. The size distribution can be controlled by adjusting the Vapplied, pulse intensity, and pulse sequence implemented during sonoelectroreduction. We view this technique as a scalable method to synthesize metal NPs from bulk metal without chemical reducing agents.

4.
ACS Nano ; 16(11): 18873-18885, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36255141

RESUMEN

Colloidally prepared core@shell nanoparticles (NPs) were converted to monodisperse high entropy alloy (HEA) NPs by annealing, including quinary, senary, and septenary phases comprised of PdCuPtNi with Co, Ir, Rh, Fe, and/or Ru. Intraparticle heterogeneity, i.e., subdomains within individual NPs with different metal distributions, was observed for NPs containing Ir and Ru, with the phase stabilities of the HEAs studied by atomistic simulations. The quinary HEA NPs were found to be durable catalysts for the oxygen reduction reaction, with all but the PdCuPtNiIr NPs presenting better activities than commercial Pt. Density functional theory (DFT) calculations for PdCuPtNiCo and PdCuPtNiIr surfaces (the two extremes in performance) found agreement with experiment by weighting the adsorption energy contributions by the probabilities of each active site based on their DFT energies. This finding highlights how intraparticle heterogeneity, which we show is likely overlooked in many systems due to analytical limitations, can be leveraged toward efficient catalysis.

5.
ACS Appl Mater Interfaces ; 13(31): 36670-36678, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34319712

RESUMEN

Heterogeneous photocatalysis provides a promising strategy to generate renewable fuels by harnessing solar energy. Metal heteroanionic photocatalysts have gained attention for their visible-light absorption; however, they are also plagued by photocorrosion, which limits their long-term use. Such photocorrosion occurs from photooxidation of the less electronegative nonoxide ions, leading to decomposition of the material's lattice. In this Perspective, we highlight emerging strategies to develop durable metal heteroanionic photocatalysts. We devote attention to the approaches taken for model metal oxynitrides, oxysulfides, and oxyhalide photocatalysts to provide a holistic framework. This analysis emphasizes the vital roles that interface engineering, charge carrier extraction, and crystal and electronic structure play in providing photodurability. We believe that through these approaches, durable and visible-light-absorbing artificial photosynthetic systems can be developed for a sustainable future.

6.
ACS Appl Mater Interfaces ; 13(44): 51876-51885, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33945682

RESUMEN

Bimetallic Pd-based nanoparticles (NPs) are of interest as electrocatalysts for formic acid electrooxidation (FAEO) because of their higher initial catalytic activity and CO tolerance when compared to Pt. Intermetallic NPs (i-NPs) with specific geometric and electronic structures generally exhibit superior catalytic activity, selectivity, and durability when compared to their disordered (random alloy) counterparts; however, the colloidal synthesis of i-NPs remains a challenge. Here, a one-pot method was demonstrated as a facile route to obtain monodisperse Pd-Sn NPs with phase control, including intermetallic hexagonal Pd3Sn2 (P63/mmc), intermetallic orthorhombic Pd2Sn (Pnma), and alloy cubic Pd3Sn (FCC, Fm3m) as size-controlled NPs with quasi-spherical shapes. Initial metal precursor ratios and reaction temperature were critical parameters to achieving phase control. Also, slight modifications of synthetic conditions resulted in either Pd2Sn nanorhombohedra or nanorods with tunable aspect ratios. A systematic evaluation of the Pd-Sn NPs for FAEO showed that most presented higher specific activities when compared to commercial Pd/C, in which Pd2Sn quasi-spheres and nanorhombohedra showed the highest catalytic activity for FAEO. These results highlight the benefits of phase-controlled Pd-based nanocatalysts with defined nanocrystal size and shape, with use of trioctylphospine (TOP) and oleic acid (OA) central to shape and size control.

7.
Nanoscale Horiz ; 6(3): 231-237, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33480921

RESUMEN

High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

8.
Nanoscale ; 12(19): 10480-10490, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32374332

RESUMEN

Solar-driven photocatalysis is emerging as a key chemical transformation strategy due to its favourable energy economy. However, in photocatalytic oxidation reactions where molecular oxygen (O2) is a reactant, achieving higher efficiency requires an O2-saturated environment in order to maintain a high oxygen level on the catalyst surface, necessitating an additional energy-consuming step of O2 separation from air. Here we show that in the presence of carbon quantum dots (CQDs), the oxygen content and the ability of O2 to diffuse in water increase significantly. We first demonstrate a novel strategy to convert several grams of polyethylene, a stubborn pollutant, into highly photoactive CQDs by stepwise dehydrogenation and graphitization. In a typical CQD concentration of ∼1 mg ml-1, the oxygen level in water reaches ∼640 µM, double that of pure water inferring an extremely high O2 content of ∼1 wt% associated with CQDs under ambient conditions. Therefore, when the CQDs were used to catalyze photo-oxidation of aromatic alcohols by sunlight, the efficiency was found higher than previous instances despite those employing high oxygen pressure, temperature and expensive materials. Besides waste polyethylene utilization, the uniqueness of oxygen enrichment in CQD solutions may offer immense prospects including those in photo-oxidation reactions.

9.
Dalton Trans ; 48(21): 7110-7116, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30949649

RESUMEN

Herein, we show that composites of Bi3TaO7-Bi4TaO8X (X = Cl, Br), two important Bi- and Ta-based light-responsive phases, can be prepared by high temperature, ambient air treatment of the precursors including easily oxidizable BiOX that retain the halide phases in excess of 60% and exhibit high photocatalytic activity. Furthermore, when these phases were loaded with less than 1% noble metals (Pd, Pt, Ag), nearly complete separation of the photogenerated excitons was observed, leading to a significant enhancement in the photocatalytic activity.

10.
ACS Appl Mater Interfaces ; 10(40): 33737-33767, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30222309

RESUMEN

Water-based renewable energy cycle involved in water splitting, fuel cells, and metal-air batteries has been gaining increasing attention for sustainable generation and storage of energy. The major challenges in these technologies arise due to the poor kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reactions (OER), besides the high cost of the catalysts. Attempts to address these issues have led to the development of many novel and inexpensive catalysts as well as newer mechanistic insights, particularly so in the last three-four years when more catalysts have been investigated than ever before. With the growing emphasis on bifunctionality, that is, materials that can facilitate both reduction and evolution of oxygen, this review is intended to discuss all major families of ORR, OER, and bifunctional catalysts such as metals, alloys, oxides, other chalcogenides, pnictides, and metal-free materials developed during this period in a single platform, while also directing the readers to specific and detailed review articles dealing with each family. In addition, each section highlights the latest theoretical and experimental insights that may further improve ORR/OER performances. The bifunctional catalysts being sufficiently new, no consensus appears to have emerged about the efficiencies. Therefore, a statistical analysis of their performances by considering nearly all literature reports that have appeared in this period is presented. The current challenges in rational design of these catalysts as well as probable strategies to improve their performances are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA