Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Ecol ; 50(1-2): 52-62, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932621

RESUMEN

Plants have evolved a diverse arsenal of defensive secondary metabolites in their evolutionary arms race with insect herbivores. In addition to the bottom-up forces created by plant chemicals, herbivores face top-down pressure from natural enemies, such as predators, parasitoids and parasites. This has led to the evolution of specialist herbivores that do not only tolerate plant secondary metabolites but even use them to fight natural enemies. Monarch butterflies (Danaus plexippus) are known for their use of milkweed chemicals (cardenolides) as protection against vertebrate predators. Recent studies have shown that milkweeds with high cardenolide concentrations can also provide protection against a virulent protozoan parasite. However, whether cardenolides are directly responsible for these effects, and whether individual cardenolides or mixtures of these chemicals are needed to reduce infection, remains unknown. We fed monarch larvae the four most abundant cardenolides found in the anti-parasitic-milkweed Asclepias curassavica at varying concentrations and compositions to determine which provided the highest resistance to parasite infection. Measuring infection rates and infection intensities, we found that resistance is dependent on both concentration and composition of cardenolides, with mixtures of cardenolides performing significantly better than individual compounds, even when mixtures included lower concentrations of individual compounds. These results suggest that cardenolides function synergistically to provide resistance against parasite infection and help explain why only milkweed species that produce diverse cardenolide compounds provide measurable parasite resistance. More broadly, our results suggest that herbivores can benefit from consuming plants with diverse defensive chemical compounds through release from parasitism.


Asunto(s)
Asclepias , Mariposas Diurnas , Parásitos , Enfermedades Parasitarias , Animales , Mariposas Diurnas/metabolismo , Asclepias/química , Cardenólidos/farmacología , Cardenólidos/metabolismo , Larva/metabolismo
2.
Evolution ; 77(1): 166-185, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36622711

RESUMEN

Many interspecific interactions are shaped by coevolution. Transmission mode is thought to influence opportunities for coevolution within symbiotic interactions. Vertical transmission maintains partner fidelity, increasing opportunities for coevolution, but horizontal transmission may disrupt partner fidelity, potentially reducing opportunities for coevolution. Despite these predictions, the role of coevolution in the maintenance of horizontally transmitted symbioses is unclear. Leveraging a tractable insect-bacteria symbiosis, we tested for signatures of pairwise coevolution by assessing patterns of host-symbiont specialization. If pairwise coevolution defines the interaction, we expected to observe evidence of reciprocal specialization between hosts and their local symbionts. We found no evidence for local adaptation between sympatric lineages of Anasa tristis squash bugs and Caballeronia spp. symbionts across their native geographic range. We also found no evidence for specialization between three co-localized Anasa host species and their native Caballeronia symbionts. Our results demonstrate generalist dynamics underlie the interaction between Anasa insect hosts and their Caballeronia symbionts. We predict that selection from multiple host species may favor generalist symbiont traits through diffuse coevolution. Alternatively, selection for generalist traits may be a consequence of selection by hosts for fixed cooperative symbiont traits without coevolution.


Asunto(s)
Bacterias , Simbiosis , Animales , Adaptación Fisiológica , Aclimatación , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA