Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 60(4): 637-50, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26585386

RESUMEN

Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygen-rich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.


Asunto(s)
Biopelículas , Mycobacterium smegmatis/fisiología , Mycobacterium tuberculosis/fisiología , Policétidos/metabolismo , Quinonas/metabolismo , Acilcoenzima A/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Hipoxia de la Célula , Oxidación-Reducción , Sintasas Poliquetidas/metabolismo
2.
PLoS Pathog ; 10(1): e1003902, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497832

RESUMEN

Mycobacterium tuberculosis (Mtb) survives under oxidatively hostile environments encountered inside host phagocytes. To protect itself from oxidative stress, Mtb produces millimolar concentrations of mycothiol (MSH), which functions as a major cytoplasmic redox buffer. Here, we introduce a novel system for real-time imaging of mycothiol redox potential (EMSH ) within Mtb cells during infection. We demonstrate that coupling of Mtb MSH-dependent oxidoreductase (mycoredoxin-1; Mrx1) to redox-sensitive GFP (roGFP2; Mrx1-roGFP2) allowed measurement of dynamic changes in intramycobacterial EMSH with unprecedented sensitivity and specificity. Using Mrx1-roGFP2, we report the first quantitative measurements of EMSH in diverse mycobacterial species, genetic mutants, and drug-resistant patient isolates. These cellular studies reveal, for the first time, that the environment inside macrophages and sub-vacuolar compartments induces heterogeneity in EMSH of the Mtb population. Further application of this new biosensor demonstrates that treatment of Mtb infected macrophage with anti-tuberculosis (TB) drugs induces oxidative shift in EMSH , suggesting that the intramacrophage milieu and antibiotics cooperatively disrupt the MSH homeostasis to exert efficient Mtb killing. Lastly, we analyze the membrane integrity of Mtb cells with varied EMSH during infection and show that subpopulation with higher EMSH are susceptible to clinically relevant antibiotics, whereas lower EMSH promotes antibiotic tolerance. Together, these data suggest the importance of MSH redox signaling in modulating mycobacterial survival following treatment with anti-TB drugs. We anticipate that Mrx1-roGFP2 will be a major contributor to our understanding of redox biology of Mtb and will lead to novel strategies to target redox metabolism for controlling Mtb persistence.


Asunto(s)
Cisteína/metabolismo , Glicopéptidos/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Inositol/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Tuberculosis/metabolismo , Línea Celular Tumoral , Cisteína/genética , Glicopéptidos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inositol/genética , Macrófagos/metabolismo , Macrófagos/patología , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Ingeniería de Proteínas , Tuberculosis/genética , Tuberculosis/patología
3.
Mol Microbiol ; 85(6): 1148-65, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22780904

RESUMEN

Host-generated oxidative stress is considered one of the main mechanisms constraining Mycobacterium tuberculosis (Mtb) growth. The redox-sensing mechanisms in Mtb are not completely understood. Here we show that WhiB4 responds to oxygen (O2) and nitric oxide (NO) via its 4Fe-4S cluster and controls the oxidative stress response in Mtb. The WhiB4 mutant (MtbΔwhiB4) displayed an altered redox balance and a reduced membrane potential. Microarray analysis demonstrated that MtbΔwhiB4 overexpresses the antioxidant systems including alkyl hydroperoxidase (ahpC-ahpD) and rubredoxins (rubA-rubB). DNA binding assays showed that WhiB4 [4Fe-4S] cluster is dispensable for DNA binding. However, oxidation of the apo-WhiB4 Cys thiols induced disulphide-linked oligomerization, DNA binding and transcriptional repression, whereas reduction reversed the effect. Furthermore, WhiB4 binds DNA with a preference for GC-rich sequences. Expression analysis showed that oxidative stress repressed whiB4 and induced antioxidants in Mtb, while their hyper-induction was observed in MtbΔwhiB4. MtbΔwhiB4 showed increased resistance to oxidative stress in vitro and enhanced survival inside the macrophages. Lastly, MtbΔwhiB4 displayed hypervirulence in the lungs of guinea pigs, but showed a defect in dissemination to their spleen. These findings suggest that WhiB4 systematically calibrates the activation of oxidative stress response in Mtb to maintain redox balance, and to modulate virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Estrés Oxidativo , Estrés Fisiológico , Animales , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Cobayas , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Análisis por Micromatrices , Óxido Nítrico/toxicidad , Oxidantes/toxicidad , Oxígeno/toxicidad , Bazo/microbiología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Redox Biol ; 19: 116-133, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30149290

RESUMEN

Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). Therefore, how Mtb organizes genome architecture and regulates gene expression to counterbalance oxidative imbalance is unknown. Here, we report that an intracellular redox-sensor, WhiB4, dynamically links genome condensation and oxidative stress response in Mtb. Disruption of WhiB4 affects the expression of genes involved in maintaining redox homeostasis, central metabolism, and respiration under oxidative stress. Notably, disulfide-linked oligomerization of WhiB4 in response to oxidative stress activates the protein's ability to condense DNA. Further, overexpression of WhiB4 led to hypercondensation of nucleoids, redox imbalance and increased susceptibility to oxidative stress, whereas WhiB4 disruption reversed this effect. In accordance with the findings in vitro, ChIP-Seq data demonstrated non-specific binding of WhiB4 to GC-rich regions of the Mtb genome. Lastly, data indicate that WhiB4 deletion affected the expression of ~ 30% of genes preferentially bound by the protein, suggesting both direct and indirect effects on gene expression. We propose that WhiB4 structurally couples Mtb's response to oxidative stress with genome organization and transcription.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Estrés Oxidativo , Proteínas Represoras/genética , Tuberculosis/microbiología , Animales , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Genoma Bacteriano , Humanos , Ratones , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Células RAW 264.7 , Proteínas Represoras/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA