Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2316615121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861602

RESUMEN

Many cancer-driving protein targets remain undruggable due to a lack of binding molecular scaffolds. In this regard, octahedral metal complexes with unique and versatile three-dimensional structures have rarely been explored as inhibitors of undruggable protein targets. Here, we describe antitumor iridium(III) pyridinium-N-heterocyclic carbene complex 1a, which profoundly reduces the viability of lung and breast cancer cells as well as cancer patient-derived organoids at low micromolar concentrations. Compound 1a effectively inhibits the growth of non-small-cell lung cancer and triple-negative breast cancer xenograft tumors, impedes the metastatic spread of breast cancer cells, and can be modified into an antibody-drug conjugate payload to achieve precise tumor delivery in mice. Identified by thermal proteome profiling, an important molecular target of 1a in cellulo is Girdin, a multifunctional adaptor protein that is overexpressed in cancer cells and unequivocally serves as a signaling hub for multiple pivotal oncogenic pathways. However, specific small-molecule inhibitors of Girdin have not yet been developed. Notably, 1a exhibits high binding affinity to Girdin with a Kd of 1.3 µM and targets the Girdin-linked EGFR/AKT/mTOR/STAT3 cancer-driving pathway, inhibiting cancer cell proliferation and metastatic activity. Our study reveals a potent Girdin-targeting anticancer compound and demonstrates that octahedral metal complexes constitute an untapped library of small-molecule inhibitors that can fit into the ligand-binding pockets of key oncoproteins.


Asunto(s)
Antineoplásicos , Iridio , Metano , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Iridio/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metano/análogos & derivados , Metano/química , Metano/farmacología , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino
2.
J Am Chem Soc ; 146(23): 16161-16172, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38720418

RESUMEN

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

3.
J Comput Chem ; 45(6): 321-330, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37861354

RESUMEN

Cyclometalated Pt(II) complexes are popular phosphorescent emitters with color-tunable emissions. To render their practical applications as organic light-emitting diodes emitters, it is required to develop Pt(II) complexes with high radiative decay rate constant and photoluminescence (PL) quantum yield. Here, a general protocol is developed for accurate predictions of emission wavelength, radiative decay rate constant, and PL quantum yield based on the combination of first-principles quantum mechanical method, machine learning, and experimental calibration. A new dataset concerning phosphorescent Pt(II) emitters is constructed, with more than 200 samples collected from the literature. Features containing pertinent electronic properties of the complexes are chosen and ensemble learning models combined with stacking-based approaches exhibit the best performance, where the values of squared correlation coefficients are 0.96, 0.81, and 0.67 for the predictions of emission wavelength, PL quantum yield and radiative decay rate constant, respectively. The accuracy of the protocol is further confirmed using 24 recently reported Pt(II) complexes, which demonstrates its reliability for a broad palette of Pt(II) emitters.

4.
Small ; 20(12): e2307393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37897146

RESUMEN

Described here are sterically hindered tetradentate [Pt(O^N^C^N)] emitters (Pt-1, Pt-2, and Pt-3) developed for stable and high-performance green phosphorescent organic light-emitting diodes (OLEDs). These Pt(II) emitters exhibit strong saturated green phosphorescence (λmax = 517-531 nm) in toluene and mCP thin films with emission quantum yields as high as 0.97, radiative rate constants (kr) as high as 4.4-5.3 × 105 s-1 and reduced excimer emission, and with a preferential horizontally oriented transition dipole ratio of up to 84%. Theoretical calculations show that p-(hetero)arene substituents at the periphery of the ligand scaffolds in Pt-1, Pt-2, and Pt-3 can i) enhance the spin-orbit coupling (SOC) between the lower singlet excited states and the T1 state, and S0→Sn (n = 1 or 2) transition dipole moment, and ii) introducing additional SOC activity and the bright 1ILCT[π(carbazole)→π*(N^C^N)] excited state (Pt-2 and Pt-3), which are the main contributors to the increased kr values. Utilizing these tetradentate Pt(II) emitters, green phosphorescent OLEDs are fabricated with narrow-band electroluminescence (FWHM down to 36 nm), high external quantum efficiency, current efficiency up to 27.6% and 98.7 cd A-1, and an unprecedented device lifetime (LT95) of up to 9270 h at 1000 cd m-2 under laboratory conditions.

5.
Proc Natl Acad Sci U S A ; 118(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372160

RESUMEN

Metallophilicity is defined as the interaction among closed-shell metal centers, the origin of which remains controversial, particularly for the roles of spd orbital hybridization (mixing of the spd atomic orbitals of the metal atom in the molecular orbitals of metal complex) and the relativistic effect. Our studies reveal that at close M-M' distances in the X-ray crystal structures of d8 and d10 organometallic complexes, M-M' closed-shell interactions are repulsive in nature due to strong M-M' Pauli repulsion. The relativistic effect facilitates (n + 1)s-nd and (n + 1)p-nd orbital hybridization of the metal atom, where (n + 1)s-nd hybridization induces strong M-M' Pauli repulsion and repulsive M-M' orbital interaction, and (n + 1)p-nd hybridization suppresses M-M' Pauli repulsion. This model is validated by both DFT (density functional theory) and high-level coupled-cluster singles and doubles with perturbative triples computations and is used to account for the fact that the intermolecular or intramolecular Ag-Ag' distance is shorter than the Au-Au' distance, where a weaker Ag-Ag' Pauli repulsion plays an important role. The experimental studies verify the importance of ligands in intermolecular interactions. Although the M-M' interaction is repulsive in nature, the linear coordination geometry of the d10 metal complex suppresses the L-L' (ligand-ligand) Pauli repulsion while retaining the strength of the attractive L-L' dispersion, leading to a close unsupported M-M' distance that is shorter than the sum of the van der Waals radius (rvdw) of the metal atoms.

6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33883283

RESUMEN

Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos Organoplatinos/uso terapéutico , Vimentina/efectos de los fármacos , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Femenino , Células HCT116 , Humanos , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Compuestos Organoplatinos/metabolismo , Compuestos Organoplatinos/farmacología , Ratas , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Am Chem Soc ; 145(26): 14288-14297, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196226

RESUMEN

Assembling conductive or magnetic heterostructures by bulk inorganic materials is important for making functional electronic or spintronic devices, such as semiconductive p-doped and n-doped silicon for P-N junction diodes, alternating ferromagnetic and nonmagnetic conductive layers used in giant magnetoresistance (GMR). Nonetheless, there have been few demonstrations of conductive or magnetic heterostructures made by discrete molecules. It is of fundamental interest to prepare and investigate heterostructures based on molecular conductors or molecular magnets, such as single-molecule magnets (SMMs). Herein, we demonstrate the fabrication of a series of molecular heterostructures composed of (TTF)2M(pdms)2 (TTF = tetrathiafulvalene, M = Co(II), Zn(II), Ni(II), H2pdms = 1,2-bis(methanesulfonamido)benzene) multiple building blocks through a well-controlled step-by-step electrocrystallization growth process, where the Co(pdms)2, Ni(pdms)2, and Zn(pdms)2 anionic complex is a SMM, paramagnetic, and diamagnetic molecule, respectively. Magnetic and SMM properties of the heterostructures were characterized and compared to the parentage (TTF)2Co(pdms)2 complex. This study presents the first methodology for creating molecule-based magnetic heterostructural systems by electrocrystallization.

8.
Proc Natl Acad Sci U S A ; 117(3): 1321-1329, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896586

RESUMEN

Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M-S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.


Asunto(s)
Antineoplásicos/química , Cisteína/química , Oro/química , Mesoporfirinas/química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/metabolismo , Células HCT116 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Unión Proteica , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Distribución Tisular
9.
Angew Chem Int Ed Engl ; 62(9): e202215891, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36596721

RESUMEN

Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.

10.
Angew Chem Int Ed Engl ; 62(50): e202312844, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37905561

RESUMEN

Multicomponent supramolecular block copolymers (BCPs) have attracted much attention due to their potential functionalities, but examples of three-component supramolecular BCPs are rare. Herein, we report the synthesis of three-component multiblock 1D supramolecular copolymers of Ir(III) complexes 1-3 by a sequential seeded supramolecular polymerization approach. Precise control over the kinetically trapped species via the pathway complexity of the monomers is the key to the successful synthesis of BCPs with up to 9 blocks. Furthermore, 5-block BCPs with different sequences could be synthesized by changing the addition order of the kinetic species during a sequentially seeded process. The corresponding heterogeneous nucleation-elongation process has been confirmed by the UV/Vis absorption spectra, and each segment of the multiblock copolymers could be characterized by both TEM and SEM. Interestingly, the energy transfer leads to weakened emission of 1-terminated and enhanced emission of 3-terminated BCPs. This study will be an important step in advancing the synthesis and properties of three-component BCPs.

11.
Angew Chem Int Ed Engl ; 62(10): e202216523, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484771

RESUMEN

Introduction of multiple kinetic aggregation states (Aggs) into the self-assembly pathway could bring complexity and flexibility to the self-assemblies, which is difficult to realize due to the delicate equilibria established among different Aggs bonded by weak noncovalent interactions. Here, we describe a series of chiral and achiral d10 AuI bis(N-heterocyclic carbene, NHC) complexes, and the achiral complex could undergo self-assembly with multiple kinetic Aggs. Generation of multiple kinetic Aggs was realized by applying chiral or achiral seeds exhibiting large differences in elongation temperatures for their respective cooperative self-assembly processes. We further showed that the chiral AuI self-assemblies having non-centrosymmetric packing forms exhibit nonlinear optical response of second harmonic generation (SHG), while the SHG signal is absent in the achiral analogue. The crystalline achiral AuI self-assemblies could function as optical waveguides with strong emission polarization.

12.
Angew Chem Int Ed Engl ; 62(19): e202218577, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36716145

RESUMEN

Iron-catalyzed asymmetric amination of C(sp3 )-H bonds is appealing for synthetic applications due to the biocompatibility and high earth abundance of iron, but examples of such reactions are sparse. Herein we describe chiral iron complexes of meso- and ß-substituted-porphyrins that can catalyze asymmetric intramolecular C(sp3 )-H amination of aryl and arylsulfonyl azides to afford chiral indolines (29 examples) and benzofused cyclic sulfonamides (17 examples), respectively, with up to 93 % ee (yield: up to 99 %) using 410 nm light under mild conditions. Mechanistic studies, including DFT calculations, for the reactions of arylsulfonyl azides reveal that the Fe(NSO2 Ar) intermediate generated in situ under photochemical conditions reacts with the C(sp3 )-H bond through a stepwise hydrogen atom transfer/radical rebound mechanism, with enantioselectivity arising from cooperative noncovalent interactions between the Fe(NSO2 Ar) unit and the peripheral substituents of the chiral porphyrin scaffold.

13.
J Org Chem ; 87(13): 8289-8302, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35726727

RESUMEN

An efficient iron-catalyzed asymmetric [4 + 2] cycloaddition of cyclopentadiene with α,ß-unsaturated acyl imidazoles or 2-cinnamoylisoindoline-1,3-dione derivatives was developed to afford the addition products in high yield and selectivity. Interestingly, the absolute structures of the addition products were controlled by the auxiliaries via different coordination modes with the same type of catalyst.

14.
Org Biomol Chem ; 20(3): 485-497, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34847217

RESUMEN

Transition-metal indenyl complexes usually exhibit different reactivities compared with their cyclopentadienyl analogues. Up to now, at least 10 metal-indenyl bonding modes have been reported. Because of the "indenyl effect", transition-metal indenyl complexes usually show enhanced reactivity in substitution and related reactions. This review provides an overview on the use and impact of indenyl phosphines in organometallic chemistry and transition-metal-catalysed reactions in the recent two decades. Some cationic and zwitterionic metal complexes supported by P,N-substituted indene or indenide ligands are described. They have been reported to induce the cleavage of E-H (E = H, Si and B) bonds and can be used as catalysts for addition of E-H bonds to unsaturated substrates. 2-Aryl indenyl phosphine ligands L3-L11 have been proven to be a class of versatile ligands for palladium-catalysed C-C and C-N cross-coupling reactions. Moreover, optically active tethered indenyl phosphine ligands can have better stereoselective control over the chirality arising at the metal center in the oxidative addition of their rhodium complexes with alkyl halides.

15.
Angew Chem Int Ed Engl ; 61(10): e202115515, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939273

RESUMEN

Here we describe the synthesis and characterization of a new class of dinuclear PtII complexes with blue phosphorescence. Bulky N-heterocyclic carbene and tethered bridging ligands were employed to suppress photo-induced structural changes and to improve thermal stability of the complexes. These complexes show mixed 3 IL/3 MLCT blue emission (≈460 nm) with emission quantum yields of up to 0.95, emission lifetimes of as low as 1.3 µs and radiative decay rate constants of up to 7.3×105  s-1 in 4 wt % doped PMMA films; the latter is attributed to a 1 MLCT excited state having high metal character (resulting in a large SOC) and a large transition dipole moment, based on DFT calculations. Phosphor-sensitized blue hyper-OLEDs with Commission Internationale de L'Eclairage (CIE) coordinates of (0.13, 0.12) showed a maximum EQE of 23.4 % with a full-width-at-half-maximum of 18 nm and a LT50 >250 h at an L0 of 1000 cd m-2 .

16.
Angew Chem Int Ed Engl ; 61(10): e202114323, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941015

RESUMEN

Efficient and long-range exciton transport is critical for photosynthesis and opto-electronic devices, and for triplet-harvesting materials, triplet exciton diffusion length ( L D ) and coefficient ( D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long-range anisotropic triplet exciton LD of 5-7 µm along the M-M direction using direct photoluminescence (PL) imaging technique by low-power continuous wave (CW) laser excitation. At room temperature, via a combined triplet-triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M-M contact, while is absent in nanowires without close M-M contact. Two-dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3 [dσ*(M-M)→π*] excited state during the exciton diffusion modulated by the M-M distance.

17.
Angew Chem Int Ed Engl ; 61(23): e202201739, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35302709

RESUMEN

Due to the linear coordination nature of gold(I) catalysts, achieving high enantiocontrol in asymmetric gold catalysis is a great challenge. To improve the enantiocontrol of gold catalysis, an ion-pairing strategy was therefore proposed. A series of bifunctional P,N ligands based on chiral spirocyclic and biaryl scaffolds were synthesized and applied in the gold(I)-catalyzed desymmetric lactonization of alkynylmalonic acids. A wide range of chiral lactones containing an α-position quaternary stereocenter were synthesized with high yields, excellent regioselectivity and enantioselectivity under mild reaction conditions. The synthetic utilities of the current reaction were demonstrated by gram-scale synthesis and transformations of chiral lactones. The origin of enantioselectivity and the role of the alcohol additive were elucidated via control experiments and DFT calculations.


Asunto(s)
Oro , Lactonas , Catálisis , Ligandos , Estereoisomerismo
18.
Angew Chem Int Ed Engl ; 61(33): e202203982, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647660

RESUMEN

A critical step in advancing the practical application of copper-based organic light-emitting diodes (OLEDs) is to bridge the large gap between device efficiency and operational stability at practical luminance. Described is a panel of air- and thermally stable two-coordinate CuI emitters featuring bulky pyrazine- (PzIPr) or pyridine-fused N-heterocyclic carbene (PyIPr*) and carbazole (Cz) ligands with enhanced amide-Cu-carbene bonding interactions. These CuI emitters display thermally activated delayed fluorescence (TADF) from the 1 LL'CT(Cz→PzIPr/PyIPr*) excited states across the blue to red regions with exceptional radiative rate constants of 1.1-2.2×106  s-1 . Vapour-deposited OLEDs based on these CuI emitters showed excellent external quantum efficiencies and luminance up to 23.6 % and 222 200 cd m-2 , respectively, alongside record device lifetimes (LT90 ) up to 1300 h at 1000 cd m-2 under our laboratory conditions, highlighting the practicality of the CuI -TADF emitters.

19.
Angew Chem Int Ed Engl ; 61(21): e202200748, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35183066

RESUMEN

Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.

20.
Angew Chem Int Ed Engl ; 61(52): e202213392, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36288083

RESUMEN

Acceleration of singlet-triplet intersystem crossings (ISC) is instrumental in bolstering triplet exciton harvesting of multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters. This work describes a simple gold(I) coordination strategy to enhance the spin-orbit coupling of green and blue BN(O)-based MR-TADF emitters, which results in a notable increase in rate constants of the spectroscopically observed ISC process to 3×109  s-1 with nearly unitary ISC quantum yields. Accordingly, the resultant thermally-stable AuI emitters attained large values of delayed fluorescence radiative rate constant up to 1.3×105 /1.7×105  s-1 in THF/PMMA film while preserving narrowband emissions (FWHM=30-37 nm) and high emission quantum yields (ca. 0.9). The vapor-deposited ultrapure-green OLEDs fabricated with these AuI emitters delivered high luminance of up to 2.53×105  cd m-2 as well as external quantum efficiencies of up to 30.3 % with roll-offs as low as 0.8 % and long device lifetimes (LT60 ) of 1210 h at 1000 cd m-2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA