Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7853): 283-289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524990

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , SARS-CoV-2/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Línea Celular , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunización Pasiva , Internacionalidad , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Multimerización de Proteína , ARN Viral/análisis , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Sueroterapia para COVID-19 , Vacunas de ARNm
2.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199914

RESUMEN

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/genética , Proteínas Inhibidoras de la Apoptosis/genética , Cromatografía en Gel , Reactivos de Enlaces Cruzados , Humanos , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteolisis , Espectrometría de Masa por Ionización de Electrospray , Ubiquitina-Proteína Ligasas , Ubiquitinación , Difracción de Rayos X
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 1036-1040, 2023 Aug 10.
Artículo en Zh | MEDLINE | ID: mdl-37532508

RESUMEN

OBJECTIVE: To explore the clinical characteristics and molecular genetic mechanism of a fetus with recombinant chromosome 8 (Rec8) syndrome. METHODS: A fetus who was diagnosed with Rec8 syndrome at the Provincial Hospital Affiliated to Shandong First Medical University on July 20, 2021 due to high risk for sex chromosomal aneuploidy indicated by non-invasive prenatal testing (NIPT) (at 21st gestational week) was selected as the study subject. Clinical data of the fetus was collected. G-banded karyotyping and chromosomal microarray analysis (CMA) were carried out on the amniotic fluid sample. Peripheral blood samples of the couple were also subjected to G banded karyotyping analysis. RESULTS: Prenatal ultrasonography at 23rd gestational week revealed hypertelorism, thick lips, renal pelvis separation, intrahepatic echogenic foci, and ventricular septal defect. The karyotype of amniotic fluid was 46,XX,rec(8)(qter→q22.3::p23.1→qter), and CMA was arr[GRCh37]8p23.3p23.1(158049_6793322)×1, 8q22.3q24.3(101712402_146295771)×3. The karyotype of the pregnant woman was 46,XX,inv(8)(p23.1q22.3), whilst that of her husband was normal. CONCLUSION: The Rec8 syndrome in the fetus may be attributed to the pericentric inversion of chromosome 8 in its mother. Molecular testing revealed that the breakpoints of this Rec8 have differed from previously reported ones.


Asunto(s)
Cromosomas Humanos Par 8 , Feto , Humanos , Feto/anomalías , Femenino , Embarazo , Cariotipificación
4.
Angew Chem Int Ed Engl ; 60(50): 26314-26319, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34609778

RESUMEN

Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Morfolinas/química , Péptidos/análisis , Polímeros/química , Estricnina/análisis , Agua/química , Geles/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
5.
Biophys J ; 117(11): 2228-2239, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31703801

RESUMEN

Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.


Asunto(s)
Simulación de Dinámica Molecular , Mutación , Receptor de Anafilatoxina C5a/química , Análisis de Secuencia/métodos , Alanina/química , Alanina/genética , Sustitución de Aminoácidos , Células HEK293 , Humanos , Aprendizaje Automático , Dominios Proteicos , Estabilidad Proteica , Receptor de Anafilatoxina C5a/genética
6.
J Org Chem ; 84(8): 4803-4813, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30605335

RESUMEN

Cyclic peptides have long tantalized drug designers with their potential ability to combine the best attributes of antibodies and small molecules. An ideal cyclic peptide drug candidate would be able to recognize a protein surface like an antibody while achieving the oral bioavailability of a small molecule. It has been hypothesized that such cyclic peptides balance permeability and solubility using their solvent-dependent conformational flexibility. Herein we report a conformational deconvolution NMR methodology that combines residual dipolar couplings, J-couplings, and intramolecular hydrogen bond analysis along with conformational analysis using molecular dynamics simulations and density functional theory calculations for studying cyclic peptide conformations in both low-dielectric solvent (chloroform) and high-dielectric solvent (DMSO) to experimentally study the solvent-dependent conformational change hypothesis. Taken together, the combined experimental and computational approaches can illuminate conformational ensembles of cyclic peptides in solution and help identify design opportunities for better permeability.


Asunto(s)
Teoría Funcional de la Densidad , Simulación de Dinámica Molecular , Péptidos Cíclicos/síntesis química , Enlace de Hidrógeno , Péptidos Cíclicos/química , Conformación Proteica
7.
Bioorg Med Chem Lett ; 28(15): 2585-2592, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29980357

RESUMEN

The drugable proteome is limited by the number of functional binding sites that can bind small molecules and respond with a therapeutic effect. Orthosteric and allosteric modulators of enzyme function or receptor signaling are well-established mechanisms of drug action. Drugs that perturb protein-protein interactions have only recently been launched. This approach is more difficult due to the extensive contact surfaces that must be perturbed antagonistically. Compounds that promote novel protein-protein interactions promise to dramatically expand opportunities for therapeutic intervention. This approach is precedented with natural products (rapamycin, FK506, sanglifehrin A), synthetic small molecules (thalidomide and IMiD derivatives) and indisulam analogues.


Asunto(s)
Adhesivos/farmacología , Productos Biológicos/farmacología , Regulación Alostérica/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Ligandos , Unión Proteica , Proteolisis , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
8.
Angew Chem Int Ed Engl ; 55(33): 9601-5, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27355874

RESUMEN

Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Neuroimagen , Oxazoles/farmacología , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Proteínas tau/antagonistas & inhibidores , Encéfalo/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Triazoles/síntesis química , Triazoles/química , Proteínas tau/metabolismo
9.
Cancer Cell Int ; 15: 118, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26677348

RESUMEN

BACKGROUND: In this study, we aim to evaluate the balance of interleukin (IL)-33 and its soluble receptor sST2 in patients with aplastic anemia (AA). METHODS: Plasma IL-33, IL-17 and sST2 levels were measured in patients with active AA (n = 31), AA in remission (n = 29) and in healthy subjects (n = 30), using enzyme linked immunosorbent assays (ELISAs). RESULTS: The results showed that sST2 and IL-17 levels were significantly elevated in patients with active AA when compared to control subjects, but IL-33 levels were significantly lower in AA patients, which resulted in elevated sST2/IL-33 ratios in patients with active disease. During remission stages, the levels of these cytokines were comparable to those of healthy controls. CONCLUSIONS: The elevated levels of sST2/IL-33 in the plasma during active stages of the disease suggest a possible role in the pathogenesis and course of AA.

10.
Anal Bioanal Chem ; 406(24): 5785-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064599

RESUMEN

Cyclosporin is a family of neutral cyclic undecapeptides widely used for the prevention of organ transplant rejection and controlling viral infection. The equilibrium of conformations assumed by cyclosporin A in response to the solvent environment is thought to play a critical role in enabling good membrane penetration, which improves upon shielding the polarity of the molecule through forming intramolecular hydrogen bonds. However, the distribution of structures and their internal hydrogen bond geometries have not been elucidated thus far across the series of cyclosporins. Herein, we elucidate the conformational heterogeneity of cyclosporins using a set of analytical approaches including ion mobility mass spectrometry, hydrogen-deuterium exchange, and molecular dynamics simulation. Ion mobility measurements reveal a specific conformational distribution for each cyclosporin derivative in a structure-dependent manner. In general, we observe that the more compact conformer is associated with a greater frequency of intramolecular hydrogen bonds. Cyclosporin A is populated by structures with an extensive hydrogen bond network that is lacking in cyclosporin H, which is composed predominantly of a single compact conformation. The slower dynamics of cyclosporin H backbone is also consistent with the lack of hydrogen bonds. Furthermore, we find a strong correlation between the steric bulk of the side chain at position 2 of cyclosporin and the distribution of conformers due to differential accommodation of side chains within the macrocycle, and also report a wide range of conformational dynamics in solution.


Asunto(s)
Ciclosporinas/química , Enlace de Hidrógeno , Espectrometría de Masas , Conformación Molecular
11.
AAPS J ; 26(2): 26, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366061

RESUMEN

CYP3A is one of the most important classes of enzymes and is involved in the metabolism of over 70% drugs. While several selective CYP3A4 inhibitors have been identified, the search for a selective CYP3A5 inhibitor has turned out to be rather challenging. Recently, several selective CYP3A5 inhibitors have been identified through high-throughput screening of ~ 11,000 compounds and hit expansion using human recombinant enzymes. We set forth to characterize the three most selective CYP3A5 inhibitors in a more physiologically relevant system of human liver microsomes to understand if these inhibitors can be used for reaction phenotyping studies in drug discovery settings. Gomisin A and T-5 were used as selective substrate reactions for CYP3A4 and CYP3A5 to determine IC50 values of the two enzymes. The results showed that clobetasol propionate and loteprednol etabonate were potent and selective CYP3A5 reversible inhibitors with selectivity of 24-fold against CYP3A4 and 39-fold or more against the other major CYPs. The selectivity of difluprednate in HLM is much weaker than that in the recombinant enzymes due to hydrolysis of the acetate group in HLM. Based on the selectivity data, loteprednol etabonate can be utilized as an orthogonal approach, when experimental fraction metabolized of CYP3A5 is greater than 0.5, to understand CYP3A5 contribution to drug metabolism and its clinical significance. Future endeavors to identify even more selective CYP3A5 inhibitors are warranted to enable accurate determination of CYP3A5 contribution to metabolism versus CYP3A4.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Humanos , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Etabonato de Loteprednol , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo
12.
Plants (Basel) ; 13(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592782

RESUMEN

Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.

13.
AAPS J ; 26(3): 36, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546903

RESUMEN

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450 , Hepatocitos , Inhibidores Enzimáticos/farmacología
14.
Reprod Biomed Online ; 26(2): 168-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23265956

RESUMEN

The D19S884 marker at the fibrillin 3 gene has been analysed as a candidate location for polycystic ovary syndrome (PCOS) mainly in Caucasian descendants. A case-control study was performed with 272 PCOS women and 271 controls to test the hypothesis that variants in the D19S884 marker increase susceptibility to PCOS in Chinese women and a meta-analysis was undertaken to clarify whether there is an allele consistently contributing to the susceptibility. The association analysis showed that PCOS women were significantly different from controls in the distribution of D19S884 allele frequencies. Instead of the well-known A8 allele, the most common allele in Chinese population was proved to be A7, and the allele frequencies of A7 were statistically different between cases and controls (P=0.037). The meta-analysis of A8 and A7 only identified A8 as a significant allelic association at the D19S884 marker in all combined samples (A8: OR 1.391, 95% CI 1.169-1.654; A7: OR 1.154, 95% CI 0.894-1.490). In conclusion, the association study showed a potential association of the D19S884 marker with PCOS in Chinese Han women and the meta-analysis identified that A8 may increase susceptibility to PCOS. Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, and it affects an estimated 15% of women worldwide based on the Rotterdam criteria. Many studies in Caucasian descendants suggested that variants of the D19S884 marker at the fibrillin 3 gene are associated with the risk of this syndrome. Here we performed a case-control study with 272 PCOS women and 271 controls to investigate whether variants in the D19S884 marker increase susceptibility to PCOS in Chinese women. We also carried out a meta-analysis of some relevant studies to find a more reliable result. Our association analysis showed that PCOS women were significantly different from controls in the distribution of D19S884 allele frequencies, and instead of the well-known A8 (the letter 'A' represents 'allele'), the most common allele in Chinese population was proved to be A7, whose allele frequencies were statistically different between cases and controls. The meta-analysis of A8 and A7 only identified A8 as a significant allelic association at the D19S884 marker in all combined samples. In conclusion, our association study showed a potential association of the D19S884 marker with PCOS in Chinese Han women and the meta-analysis identified that A8 may increase susceptibility to PCOS.


Asunto(s)
Repeticiones de Dinucleótido , Proteínas de Microfilamentos/genética , Síndrome del Ovario Poliquístico/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Etnicidad/genética , Femenino , Fibrilinas , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos
15.
Genes (Basel) ; 14(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37761868

RESUMEN

Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target.

16.
Sci Transl Med ; 15(693): eade6422, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37023209

RESUMEN

Respiratory syncytial virus (RSV) is the leading, global cause of serious respiratory disease in infants and is an important cause of respiratory illness in older adults. No RSV vaccine is currently available. The RSV fusion (F) glycoprotein is a key antigen for vaccine development, and its prefusion conformation is the target of the most potent neutralizing antibodies. Here, we describe a computational and experimental strategy for designing immunogens that enhance the conformational stability and immunogenicity of RSV prefusion F. We obtained an optimized vaccine antigen after screening nearly 400 engineered F constructs. Through in vitro and in vivo characterization studies, we identified F constructs that are more stable in the prefusion conformation and elicit ~10-fold higher serum-neutralizing titers in cotton rats than DS-Cav1. The stabilizing mutations of the lead construct (847) were introduced onto F glycoprotein backbones of strains representing the dominant circulating genotypes of the two major RSV subgroups, A and B. Immunization of cotton rats with a bivalent vaccine formulation of these antigens conferred complete protection against RSV challenge, with no evidence of disease enhancement. The resulting bivalent RSV prefusion F investigational vaccine has recently been shown to be efficacious against RSV disease in two pivotal phase 3 efficacy trials, one for passive protection of infants by immunization of pregnant women and the second for active protection of older adults by direct immunization.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Embarazo , Femenino , Humanos , Animales , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/genética , Glicoproteínas , Sigmodontinae , Proteínas Virales de Fusión/genética
17.
Proteins ; 80(3): 871-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22223256

RESUMEN

Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts.


Asunto(s)
Proteínas/química , Agua/química , Sitios de Unión , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Diseño de Fármacos , Integrasa de VIH/química , VIH-1/química , Humanos , Modelos Moleculares , Conformación Proteica , Proteína 1A de Unión a Tacrolimus/química , Termodinámica
18.
Bioorg Med Chem Lett ; 22(22): 6832-8, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23046961

RESUMEN

The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/química , Inhibidores Enzimáticos/química , Bacterias Gramnegativas/efectos de los fármacos , Ácidos Hidroxámicos/química , Amidohidrolasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/química , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Relación Estructura-Actividad , Sulfonas/química
19.
Mol Biol Rep ; 39(8): 8379-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22699877

RESUMEN

The cholesterol side chain cleavage enzyme (CYP11A1) gene plays an important part in the synthesis of sex hormones and has been reported to be involved in the pathogenesis of polycystic ovary syndrome. A case-control study including 314 PCOS patients and 314 controls was conducted to assess the association of the SNPs rs4077582 and rs11632698 in CYP11A1 with PCOS using the polymerase chain reaction-restriction fragment length polymorphism method. Thereafter, 100 DNA samples were re-genotyped by direct sequencing for confirmation. The genotypic distribution of rs4077582 in women with PCOS differed from that in controls (P = 0.002). No such distributional difference was found in rs11632698 (P = 0.912). Data from our previous study of these two SNPs in another population including 290 PCOS patients and 344 controls was combined with the current data. Combined analysis (a total of 1262 participants, including 604 PCOS patients and 658 control women) showed a much more significant difference in the genotypic distribution of rs4077582 between PCOS and controls (P < 0.001). The T allele was more prevalent in PCOS patients (Odds ratio = 1.314; 95 % CI 1.122-1.540). The testosterone levels among the three genotypes for rs4077582 were different in the control group, as were the LH levels and the LH/FSH ratio. Therefore, SNP rs4077582 in CYP11A1 is strongly associated with susceptibility to PCOS and may alter the testosterone levels by the regulation of LH in different genotypes. No association was observed in rs11632698.


Asunto(s)
Pueblo Asiatico/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Predisposición Genética a la Enfermedad , Síndrome del Ovario Poliquístico/genética , Polimorfismo de Nucleótido Simple , Adulto , Alelos , Secuencia de Bases , Estudios de Casos y Controles , China , Femenino , Hormona Folículo Estimulante/sangre , Frecuencia de los Genes , Genotipo , Humanos , Hormona Luteinizante/sangre , Adulto Joven
20.
J Med Chem ; 65(2): 1525-1535, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34647463

RESUMEN

The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.


Asunto(s)
Simulación por Computador , Cisteína/química , Guanilato-Quinasas/química , MAP Quinasa Quinasa 4/química , Simulación de Dinámica Molecular , Cisteína/metabolismo , Guanilato-Quinasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , MAP Quinasa Quinasa 4/metabolismo , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA