Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202600

RESUMEN

Recently, emphasis has been placed on finding a reliable estimation of soil water content. In this study, two capacitance sensors EC5 and 5TE (METER Group) were utilized. These sensors provide many benefits relative to other sensors in that they are cost-effective and very economical regarding energy use, operate at a high measurement frequency of 70 MHz, and are dedicated to measuring at a small volume because of their small size. This makes them suitable for the context of use in this research, which consists of multiple sustainable drainage systems SuDS. Several studies have evaluated these two types of sensor but not for urban soils with specific characteristics. In addition, results from the literature are divergent and the published calibration data are limited. Therefore, an in-depth investigation of their accuracy is assessed in this paper. At first, the literature's existing procedures and methods were examined. The sensor-to-sensor variability, as well as repeatability, were tested in soil and solutions. Additionally, a field calibration method was conducted to estimate the effects of soil texture on sensors readings. Two laboratory calibration methods having different principles were also applied, compared to each other and to the field calibration as well. Results revealed weak sensor-to-sensor variability (coefficient of variation up to 15% in soil) and also good repeatability (0.1%), for both sensors. A soil-specific calibration equation has improved the estimation of the volumetric water content. In case of soil having high field bulk density, the undisturbed soil calibration method described and proposed in this paper gives promising results. The latter method yields a volumetric water content (VWC) prediction accuracy of 0.025 m3∙m-3 on a sandy loam soil. This paper presents a large knowledge of capacitance sensors measurement technique as well as their calibration procedures and methods. Limitations of existing procedures have been identified and key elements for selecting the appropriate one are suggested. Derived calibration equations have also been provided for three urban soils with different particle size distribution, ranging from sandy loam to silt loam. Accurate monitoring of soil moisture content in urban soils is thus achievable.

2.
J Environ Manage ; 246: 462-471, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31200180

RESUMEN

Physically-based urban stormwater quality modelling is helpful for increasing the understanding of spatial-temporal dynamics of urban pollution, and for designing innovative management technologies. However, because of the high computational cost, calibration and validation of physically-based models is still challenging. In this context, this study aims to develop a new meta-model based framework for efficient calibration and sensitivity analysis of complex and computationally intensive physically-based models. The proposed approach is applied to the FullSWOF-HR model. According to the average rainfall intensity, 21 rainfall events are categorized into three groups, such as 9 light rains, 6 moderate rains and 6 heavy rains. After upscaling the original high-resolution model, 77 parameter nodes are selected by using the adaptive stochastic collocation method with sparse grids algorithm on the lower-resolution surrogate. 77 simulation runs are then performed with the original model for three representative rainfall events, respectively. The interpolating polynomials of the original models are hence generated. Once the meta-model is constructed, we performed the sensitivity analysis with the variance-based Sobol's method, the results of which are consistent with our previous studies. Calibration process of the meta-model is based on the Markov chain Monte Carlo method. The optimized parameters are verified with the original model and then validated for different rainfall events. These promising results show that the proposed meta-model based approach can efficiently perform sensitivity analysis and parameter optimization for complex physical stormwater quality models, and hence will be very helpful for spreading the detailed water quantity and quality modelling for urban water management issues.


Asunto(s)
Lluvia , Movimientos del Agua , Calibración , Modelos Teóricos , Método de Montecarlo
3.
J Environ Manage ; 202(Pt 1): 151-166, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28732277

RESUMEN

The increasing use of infiltration-based systems for stormwater management questions the soil's ability to act as a long-term filter for runoff contaminants, and brings about operational matters regarding the most effective maintenance practices to enhance contaminant retention in SUDS. This paper reports the vertical extent of metal and PAH contamination in the soil of seven source-control devices in operation for more than 10 years, assessed via a two-step sampling strategy to optimize the representativeness of the contamination profiles. Metal distribution was typically characterized by a significant surface buildup, followed by a decrease in concentrations with increasing depth, usually coming close to the background values. PAH were more heterogeneously distributed with depth, but their accumulation was globally restricted to the upper 10-40 cm. This indicates an interesting potential for pollution interception by the upper horizons of soil, but does not necessarily prevent from downward fluxes, even while measuring low surface contents, as deeper strata may have lesser retention capacities. Specific amendments of the surface soil may help prevent this problem. Surface soil renewal - which would be necessary over 2.5-30 cm in four sites, according to the "strictest" standards for soil remediation - may regenerate the soil's sorption potential, but such a practice could disrupt the interactions with the local ecosystem, so this should be carried out exceptionally and not as a preventive measure.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Contaminación Ambiental , Metales , Suelo
4.
Water Sci Technol ; 75(2): 271-280, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28112654

RESUMEN

Previous researches demonstrated the occurrence of unique in-sewer sediment, the organic layer, on the Marais site in Paris, capable of explaining the entire wet weather sewer production of suspended particles. Other studies on sites having no similar organic sediment, Clichy in Paris and Ecully in Lyon, demonstrated a wet weather sewer deposits contribution (SDC) to effluent pollution comparable to that of the Marais site, casting therefore doubts on the implication of the organic layer to the outlet discharge pollution. So, an in-depth comparative investigation of the different sites' mean SDC was carried out to confirm or refute the major role of this layer vis-à-vis sewer production. The size and characteristics of the events' sample used to calculate the SDC were analyzed to find whether a statistical bias may have masked a difference that would be more coherent with field observations. After homogenizing these elements, the organic layer regained some of its previously alleged participation in sewer contribution (a maximum of 36% of the total SDC) but another unknown source was still dominant. This suggests that sewer sediment production during wet weather is a result of multiple sediment erosion: the organic layer and another major source not yet identified.


Asunto(s)
Lluvia , Aguas del Alcantarillado , Contaminación del Agua/análisis , Sesgo , Monitoreo del Ambiente , Paris , Contaminación del Agua/estadística & datos numéricos , Tiempo (Meteorología)
5.
Sci Total Environ ; 644: 941-953, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743891

RESUMEN

Among the processes governing contaminant retention in soil-based Sustainable Urban Drainage Systems (SUDS), quantifying the relative contribution of particle settling and filtration requires a tracer of runoff-generated solids. Since zirconium (Zr) is a widely used geochemical invariant in pedological approaches, with few anthropogenic sources, the present investigation aims to assess whether its use may be extended to sediment identification in SUDS. High-resolution horizontal and vertical soil sampling was carried out in 11 infiltration systems, as well as in road-deposited sediment. Following elemental analysis via X-ray fluorescence spectrometry, the spatial distribution of both Zr and urban-derived metals could be determined. Zr content in sediment was found to be fairly stable and significantly lower than in soil. In most devices, Zr and metals exhibited "mirror" trends, both horizontally and vertically, i.e. a deficit of Zr could be observed in the most contaminated area. This indicated a "dilution-like" mixture of soil and sediment, the fraction of which could be calculated and appraised spatially. The vertical profiles proved the occurrence of bed filtration over 5 to 15 cm, and enabled the calibration of a simple filtration model. The uncertainties associated with the determined filter coefficient were found to be comparable to the other experimental methods - with the additional improvement that the present approach does not require water sampling.

6.
Water Res ; 128: 412-423, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156311

RESUMEN

Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts of freshwater eutrophication and ecotoxicity compared to those arising from treated effluents. At the rain event scale the wet-weather contributions to these impacts are even more significant, accounting for example for up to 62% of the total impact on freshwater ecotoxicity. This also allowed investigating and discussing the ecotoxicity contribution of each class of pollutants among the broad range of inventoried substances. Finally, with such significant contributions of pollutant loads and associated impacts from wet-weather events, further research is required to better include temporally-differentiated emissions when evaluating eutrophication and ecotoxicity. This will provide a better understanding of how the performance of an UWS system affects the receiving environment for given local weather conditions.


Asunto(s)
Ciudades , Drenaje de Agua , Lluvia , Aguas Residuales , Contaminantes del Agua/análisis , Eutrofización , Agua Dulce , Paris , Aguas del Alcantarillado , Tiempo (Meteorología)
7.
Sci Total Environ ; 609: 17-26, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28732293

RESUMEN

Development of appropriate models, based on an in-depth understanding of the wash-off process, is essential to accurately estimating pollutant loads transported by stormwater, thereby minimizing environmental contamination. To this end, we developed an innovative rainfall simulator, which simulated an intense rainfall (120mm/h) and permitted the acquisition of runoff samples as well as the in situ monitoring of continuous flow and turbidity dynamics. Relationships between deposited sediments and total suspended solids in simulated runoff were thus investigated on two different types of surfaces within the Paris region in terms of loads and particle size distribution. Results demonstrate the occurrence of first flush phenomenon on the sidewalks even under constant flow. Results also show that the highest fraction conveyed by runoff consisted of fine (<16µm) and medium-sized (<100µm) particles, whose detachment was more favorable from smooth surfaces than from rougher ones. In terms of stormwater quality modelling, results suggest that the integration of a wash-off fraction based on both particle size and rainfall intensity could be an entrance for a better prediction of stormwater pollution.

8.
Environ Sci Pollut Res Int ; 24(34): 26497-26512, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28948446

RESUMEN

A deep understanding of pollutant buildup and wash-off is essential for accurate urban stormwater quality modeling and for the development of stormwater management practices, knowing the potential adverse impacts of runoff pollution on receiving waters. In the context of quantifying the contribution of airborne pollutants to the contamination of stormwater runoff and assessing the need of developing an integrated AIR-WATER modeling chain, loads of polycyclic aromatic hydrocarbons (PAHs) and metal trace elements (MTEs) are calculated in atmospheric dry deposits, stormwater runoff, and surface dust stock within a small yet highly trafficked urban road catchment (~ 30,000 vehicles per day) near Paris. Despite the important traffic load and according to the current definition of "atmospheric" source, atmospheric deposition did not account for more than 10% of the PAHs and trace metal loads in stormwater samples for the majority of the events, based on the ratio of deposition to stormwater. This result shows that atmospheric deposition is not a major source of pollutants in stormwater, and thus, linking the air and water compartment in a modeling chain to have more accurate estimates of pollutant loads in stormwater runoff might not be relevant. Comparison of road dust with water samples demonstrates that only the fine fraction of the available stock is eroded during a rainfall event. Even if the atmosphere mostly generates fine particles, the existence of other sources of fine particles to stormwater runoff is highlighted.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Lluvia/química , Contaminantes Químicos del Agua/análisis , Paris , Urbanización , Movimientos del Agua
9.
Environ Sci Pollut Res Int ; 24(36): 28205-28219, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29022167

RESUMEN

This article describes a stochastic method to calculate the annual pollutant loads and its application over several years at the outlet of three catchments drained by separate storm sewers. A stochastic methodology using Monte Carlo simulations is proposed for assessing annual pollutant load, as well as the associated uncertainties, from a few event sampling campaigns and/or continuous turbidity measurements (representative of the total suspended solids concentration (TSS)). Indeed, in the latter case, the proposed method takes into account the correlation between pollutants and TSS. The developed method was applied to data acquired within the French research project "INOGEV" (innovations for a sustainable management of urban water) at the outlet of three urban catchments drained by separate storm sewers. Ten or so event sampling campaigns for a large range of pollutants (46 pollutants and 2 conventional water quality parameters: TSS and total organic carbon (TOC)) are combined with hundreds of rainfall events for which, at least one among three continuously monitored parameters (rainfall intensity, flow rate, and turbidity) is available. Results obtained for the three catchments show that the annual pollutant loads can be estimated with uncertainties ranging from 10 to 60%, and the added value of turbidity monitoring for lowering the uncertainty is demonstrated. A low inter-annual and inter-site variability of pollutant loads, for many of studied pollutants, is observed with respect to the estimated uncertainties, and can be explained mainly by annual precipitation.


Asunto(s)
Monitoreo del Ambiente , Lluvia , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Procesos Estocásticos , Incertidumbre , Movimientos del Agua
10.
Sci Total Environ ; 579: 881-892, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884529

RESUMEN

Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys.

11.
Sci Total Environ ; 573: 924-936, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27599056

RESUMEN

Current urban washoff models still rely on empirical catchment-scale functions, that have not been substantially updated during the last 40years. This paper introduce a new approach using the physical model FullSWOF to evaluate urban washoff process. The modelling approach is performed for a Parisian road catchment. Water flow simulation is validated by outlet discharge measurements and local observations of water depth. Water quality modelling of three classes of particles (d50=7µm, 70µm, and 250µm) is applied using the Hairsine-Rose model. Analysis of the washoff process at the catchment scale indicates that most (>90%) of the finest particles are removed at the beginning of a rainfall event, about 10%-20% of medium-sized particles are moved over the latest part of the event, and almost no coarse particles can be transferred into the sewer inlet. Spatial analysis of washoff process reveals that the concentration of suspended solids on road and sidewalk surface is more sensitive to rainfall intensities than that on gutter surface, while coarser particles tend to accumulate in the gutter over the later part of a rainfall event. Investigation of the driving force behind the detachment process indicates that rainfall-driven effects are two orders of magnitude higher than flow-driven effects. Moreover, it is observed that rainfall-driven detachment is considerably decreased with the rising water depth, while flow-driven detachment occurs only in gutter areas. Finally, several controversial arguments on the use of physical models for assessing the washoff process, and perspectives on development of physical urban washoff models are discussed.

12.
Water Res ; 102: 96-108, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27328366

RESUMEN

Nowadays, the increasing use of vehicles is causing contaminated stormwater runoff to drain from roads. The detailed understanding of urban wash-off processes is essential for addressing urban management issues. However, existing modelling approaches are rarely applied for these objectives due to the lack of realistic input data, unsuitability of physical descriptions, and inadequate documentation of model testing. In this context, we implement a method of coupling monitoring surveys with the physically-based FullSWOF (Full Shallow Water equations for Overland Flow) model (Delestre et al., 2014) and the process-based H-R (Hairsine-Rose) model (Hairsine and Rose, 1992a, 1992b) to evaluate urban wash-off process on a road catchment near Paris (Le Perreux sur Marne, Val de Marne, France, 2661 m(2)). This work is the first time that such an approach is applied for road wash-off modelling in the context of urban stormwater runoff. On-site experimental measurements have shown that only the finest particles of the road dry stocks could be transferred to the sewer inlet during rainfall events, and most Polycyclic Aromatic Hydrocarbons (PAHs) are found in the particulate phase. Simulations over different rainfall events represent promising results in reproducing the various dynamics of water flows and sediment transports at the road catchment scale. Elementary Effects method is applied for sensitivity analysis. It is confirmed that settling velocity (Vs) and initial dry stocks (S) are the most influential parameters in both overall and higher order effects. Furthermore, flow-driven detachment seems to be insignificant in our case study, while raindrop-driven detachment is shown to be the major force for detaching sediment from the studied urban surface. Finally, a multiple sediment classification regarding the Particle Size Distribution (PSD) can be suggested for improving the model performance for future studies.


Asunto(s)
Lluvia , Movimientos del Agua , Monitoreo del Ambiente , Modelos Teóricos , Tamaño de la Partícula , Contaminantes Químicos del Agua
13.
Sci Total Environ ; 569-570: 904-926, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27432725

RESUMEN

The increasing use of Sustainable Urban Drainage Systems (SUDS) for stormwater management raises some concerns about the fate of ubiquitous runoff micropollutants in soils and their potential threat to groundwater. This question may be addressed either experimentally, by sampling and analyzing SUDS soil after a given operating time, or with a modeling approach to simulate the fate and transport of contaminants. After briefly reminding the processes responsible for the retention, degradation, or leaching of several urban-sourced contaminants in soils, this paper presents the state of the art about both experimental and modeling assessments. In spite of noteworthy differences in the sampling protocols, the soil parameters chosen as explanatory variables, and the methods used to evaluate the site-specific initial concentrations, most investigations undoubtedly evidenced a significant accumulation of metals and/or hydrocarbons in SUDS soils, which in the majority of the cases appears to be restricted to the upper 10 to 30cm. These results may suggest that SUDS exhibit an interesting potential for pollution control, but antinomic observations have also been made in several specific cases, and the inter-site concentration variability is still difficult to appraise. There seems to be no consensus regarding the level of complexity to be used in models. However, the available data deriving from experimental studies is generally limited to the contamination profiles and a few parameters of the soil, as a result of which "complex" models (including colloid-facilitated transport for example) appear to be difficult to validate before using them for predictive evaluations.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Filtración , Modelos Teóricos
14.
Water Res ; 36(5): 1275-85, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11902782

RESUMEN

Aliphatic hydrocarbons were assessed in runoff and waste waters from an urban catchment located in Paris. Runoff were sampled from different types of urban surfaces (11 roofs representing four different covering materials, two courtyards and six streets). Waste water samples were collected at the catchment outlet during dry and wet weather periods as well. This paper gives an overview of the results on the concentration and distribution points of view for both the particulate and the dissolved phases. Results were discussed on the basis of the median. Accordingly, the temporal variability was taken into account. Thus, the concentration medians ranged from 345 to 827, from 297 to 790, and from 393 to 1,359 microg L(-1) in the roof, courtyard and street samples, respectively. The levels found at the catchment outlet during dry and wet weather periods were of the same order of magnitude, i.e. 700 microgL(-1). The particulate phase represented 85% of the total aliphatic hydrocarbon content whatever the sample.


Asunto(s)
Hidrocarburos/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Paris , Lluvia
15.
Sci Total Environ ; 323(1-3): 107-22, 2004 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15081721

RESUMEN

The knowledge of the pollution stored in combined sewers is of prime importance in terms of management of wet weather flow pollution since sewer deposits play a significant role as source of pollution in combined sewer overflows. This work, which focused on the hydrocarbon (aliphatic and aromatic hydrocarbons) and metallic (Fe, Zn, Pb, Cu and Cd) pollution fixed to the different kinds of sewer deposits (gross bed sediment [GBS], organic layer [OL] and biofilm), was performed in order to provide a complete overview of the contaminant storage in the 'Le Marais' combined sewer (Central Paris, France). Firstly, our results have shown that, for all kinds of pollutants, a major part was stored in the GBS (87 to 98%), a lesser part in the OL (2 to 13%) and an insignificant part in the biofilm (<1%). These results demonstrated that the potential contribution of biofilm to wet weather pollution was negligible compared to the OL one. Secondly, the investigation of hydrocarbon fingerprints in each deposit has provided relevant information about contamination origins: (1) aliphatic hydrocarbon distributions were indicative of petroleum input in the GBS and reflected a mixture of biogenic and petroleum inputs in the OL and biofilm, (2) aromatic hydrocarbon distributions suggested an important pyrolytic contamination in all the deposits. Finally, the study of pollutant fingerprints in the different deposits and in the suspended solids going through the collector has shown that: (1) the suspended solids were the major component of OL and biofilm while urban runoff seemed to be the main transport mechanism introducing pollutants in the GBS and (2) the residence times in sewer of OL and biofilm were quite short compared to those for GBS.


Asunto(s)
Biopelículas , Hidrocarburos/análisis , Metales Pesados/análisis , Aguas del Alcantarillado/química , Abastecimiento de Agua , Monitoreo del Ambiente , Francia , Lluvia , Movimientos del Agua
16.
Chemosphere ; 54(7): 795-804, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14637336

RESUMEN

Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment.


Asunto(s)
Drenaje de Agua , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Aguas del Alcantarillado/análisis , Ciudades , Francia , Tamaño de la Partícula
17.
Environ Sci Pollut Res Int ; 21(8): 5284-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24243161

RESUMEN

Today, urban runoff is considered as an important source of environmental pollution. Roofing materials, in particular, the metallic ones, are considered as a major source of urban runoff metal contaminations. In the context of the European Water Directive (2000/60 CE), an accurate evaluation of contaminant flows from roofs is thus required on the city scale, and therefore the development of assessment tools is needed. However, on this scale, there is an important diversity of roofing materials. In addition, given the size of a city, a complete census of the materials of the different roofing elements represents a difficult task. Information relating roofing materials and their surfaces on an urban district do not currently exist in urban databases. The objective of this paper is to develop a new method of evaluating annual contaminant flow emissions from the different roofing material elements (e.g., gutter, rooftop) on the city scale. This method is based on using and adapting existing urban databases combined with a statistical approach. Different rules for identifying the materials of the different roofing elements on the city scale have been defined. The methodology is explained through its application to the evaluation of zinc emissions on the scale of the city of Créteil.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales/análisis , Modelos Químicos , Ciudades/estadística & datos numéricos , Materiales de Construcción , Francia , Vivienda , Zinc/análisis
18.
Environ Sci Pollut Res Int ; 21(17): 10225-42, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24760596

RESUMEN

The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/análisis , Ciudades , Materiales de Construcción/análisis , Contaminación Ambiental , Paris , Emisiones de Vehículos/análisis
19.
Water Res ; 57: 234-46, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24726993

RESUMEN

Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/análisis , Contaminación Química del Agua/prevención & control , Monitoreo del Ambiente/instrumentación , Restauración y Remediación Ambiental/instrumentación , Modelos Teóricos , Paris , Lluvia , Movimientos del Agua
20.
Sci Total Environ ; 493: 854-61, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25000581

RESUMEN

The objective of this study was to examine the occurrence of parabens (5 congeners), triclosan (TCS) and triclocarban (TCC) at the scale of the Parisian sewer network and to provide representative knowledge on these compounds in France for a large area. For this purpose and in collaboration with the Parisian public sanitation service (SIAAP) in charge of the collect and treatment of the Parisian wastewater, this study focused on seven main sewer trunks of the Paris conurbation, accounting for 1900,000 m(3) d(-1), i.e., about 8 million inhabitants. Concentrations lying in the 2000-20000 ng l(-1) ranges were found in wastewater, confirming the ubiquity of parabens, TCS and TCC in our environment and household products. Parabens (>97%) and to a lesser extent TCS (68% in median) were mainly associated to the dissolved fraction, as demonstrated by low KD and KOC values. For the first time, this study also evaluated the pollutant mass loads per population equivalent (PE) of parabens, TCS and TCC at the large and representative scale of the Parisian conurbation. Hence, the median mass loads varied from 176 to 3040 µg PE(-1) d(-1) for parabens and from 26 to 762 µg PE(-1) d(-1) for TCS and TCC. Based on these results and according to the assumptions done, the extrapolation of the mass loads at the national scale pointed out an annual mass loads between 51.8 and 100.7 ty(-1) for methyl paraben (MeP) and between 11.2 and 23.5 ty(-1) for TCS. Mass loads per equivalent habitant and national mass loads are both extremely relevant and innovative data. Contrary to other countries, such data are nowadays rather difficult to gain in France and neither enquiry nor database provides access to information on the use and production of these chemicals. Since cosmetic industries are voluntarily and fully engaged in the substitution of parabens, triclosan and triclocarban in personal care product, this study could constitute a "time reference status" which could be used as a basis for future monitoring.


Asunto(s)
Carbanilidas/análisis , Monitoreo del Ambiente , Parabenos/análisis , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Paris , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA