Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(9): 096801, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932537

RESUMEN

We achieve direct detection of electron hyperfine shifts in individual CdTe/ZnTe quantum dots. For the previously inaccessible regime of strong magnetic fields B_{z}≳0.1 T, we demonstrate robust polarization of a few-hundred-particle nuclear spin bath, with an optical initialization time of ∼1 ms and polarization lifetime exceeding ∼1 s. Nuclear magnetic resonance spectroscopy of individual dots reveals strong electron-nuclear interactions characterized by Knight fields |B_{e}|≳50 mT, an order of magnitude stronger than in III-V semiconductor quantum dots. Our studies confirm II-VI semiconductor quantum dots as a promising platform for hybrid electron-nuclear spin qubit registers, combining the excellent optical properties comparable to III-V dots and the dilute nuclear spin environment similar to group-IV semiconductors.

2.
Nat Mater ; 16(10): 982-986, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783160

RESUMEN

Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent 'dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed-the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

3.
Nano Lett ; 14(12): 7003-8, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375802

RESUMEN

Integration of quasi-two-dimensional (2D) films of metal-chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.

4.
Nat Mater ; 12(6): 494-504, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695746

RESUMEN

The interaction of an electronic spin with its nuclear environment, an issue known as the central spin problem, has been the subject of considerable attention due to its relevance for spin-based quantum computation using semiconductor quantum dots. Independent control of the nuclear spin bath using nuclear magnetic resonance techniques and dynamic nuclear polarization using the central spin itself offer unique possibilities for manipulating the nuclear bath with significant consequences for the coherence and controlled manipulation of the central spin. Here we review some of the recent optical and transport experiments that have explored this central spin problem using semiconductor quantum dots. We focus on the interaction between 10(4)-10(6) nuclear spins and a spin of a single electron or valence-band hole. We also review the experimental techniques as well as the key theoretical ideas and the implications for quantum information science.

5.
Nano Lett ; 12(10): 5269-74, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22989367

RESUMEN

We realize the growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy of single GaAs/GaAsP NWs demonstrates their high crystal quality and shows domination of the GaAs zinc-blende phase. Using continuous-wave and time-resolved photoluminescence (PL), we make a detailed comparison with uncapped GaAs NWs to emphasize the effect of the GaAsP capping in suppressing the nonradiative surface states. Significant PL enhancement in the core-shell structures exceeding 3 orders of magnitude at 10 K is observed; in uncapped NWs PL is quenched at 60 K, whereas single core-shell GaAs/GaAsP structures exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench.

6.
Phys Rev Lett ; 106(2): 027402, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21405250

RESUMEN

We measure the hyperfine interaction of the valence band hole with nuclear spins in single InP/GaInP semiconductor quantum dots. Detection of photoluminescence (PL) of both "bright" and "dark" excitons enables direct measurement of the Overhauser shift of states with the same electron but opposite hole spin projections. We find that the hole hyperfine constant is ≈11% of that of the electron and has the opposite sign. By measuring the degree of circular polarization of the PL, an upper limit to the contribution of the heavy-light hole mixing to the measured value of the hole hyperfine constant is deduced. Our results imply that environment-independent hole spins are not realizable in III-V semiconductor, a result important for solid-state quantum information processing using hole spin qubits.

7.
Phys Rev Lett ; 104(6): 066804, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366847

RESUMEN

We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, and also has potential for initialization of hole spin in QDs. We find that by employing this spin-forbidden process, nuclear polarization of 65% can be achieved, markedly higher than from pumping the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.

8.
Nat Commun ; 10(1): 3157, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316057

RESUMEN

Coherence of solid state spin qubits is limited by decoherence and random fluctuations in the spin bath environment. Here we develop spin bath control sequences which simultaneously suppress the fluctuations arising from intrabath interactions and inhomogeneity. Experiments on neutral self-assembled quantum dots yield up to a five-fold increase in coherence of a bare nuclear spin bath. Numerical simulations agree with experiments and reveal emergent thermodynamic behaviour where fluctuations are ultimately caused by irreversible conversion of coherence into many-body quantum entanglement. Simulations show that for homogeneous spin baths our sequences are efficient with non-ideal control pulses, while inhomogeneous bath coherence is inherently limited even under ideal-pulse control, especially for strongly correlated spin-9/2 baths. These results highlight the limitations of self-assembled quantum dots and advantages of strain-free dots, where our sequences can be used to control the fluctuations of a homogeneous nuclear spin bath and potentially improve electron spin qubit coherence.

9.
Nat Commun ; 6: 6348, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25704639

RESUMEN

Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

10.
Sci Rep ; 3: 3489, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336152

RESUMEN

Two-dimensional (2D) compounds provide unique building blocks for novel layered devices and hybrid photonic structures. However, large surface-to-volume ratio in thin films enhances the significance of surface interactions and charging effects requiring new understanding. Here we use micro-photoluminescence (PL) and ultrasonic force microscopy to explore the influence of the dielectric environment on optical properties of a few monolayer MoS2 films. PL spectra for MoS2 films deposited on SiO2 substrates are found to vary widely. This film-to-film variation is suppressed by additional capping of MoS2 with SiO2 and Si(x)N(y), improving mechanical coupling of MoS2 with surrounding dielectrics. We show that the observed PL non-uniformities are related to strong variation in the local electron charging of MoS2 films. In completely encapsulated films, negative charging is enhanced leading to uniform optical properties. Observed great sensitivity of optical characteristics of 2D films to surface interactions has important implications for optoelectronics applications of layered materials.

11.
Sci Rep ; 3: 1239, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23393621

RESUMEN

Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.


Asunto(s)
Iluminación/métodos , Óptica y Fotónica , Cristalización , Fotones , Puntos Cuánticos , Silicio/química , Temperatura
12.
Nat Nanotechnol ; 7(10): 646-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22922539

RESUMEN

Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.


Asunto(s)
Espectroscopía de Resonancia Magnética , Puntos Cuánticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA