Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 23-33, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38062774

RESUMEN

Neural tube defects (NTDs) represent a developmental disorder of the nervous system that can lead to significant disability in children and impose substantial social burdens. Valproic acid (VPA), a widely prescribed first-line antiepileptic drug for epilepsy and various neurological conditions, has been associated with a 4-fold increase in the risk of NTDs when used during pregnancy. Consequently, urgent efforts are required to identify innovative prevention and treatment approaches for VPA-induced NTDs. Studies have demonstrated that the disruption in the delicate balance between cell proliferation and apoptosis is a crucial factor contributing to NTDs induced by VPA. Encouragingly, our current data reveal that melatonin (MT) significantly inhibits apoptosis while promoting the restoration of neuroepithelial cell proliferation impaired by VPA. Moreover, further investigations demonstrate that MT substantially reduces the incidence of neural tube malformations resulted from VPA exposure, primarily by suppressing apoptosis through the modulation of intracellular reactive oxygen species levels. In addition, the Src/PI3K/ERK signaling pathway appears to play a pivotal role in VPA-induced NTDs, with significant inhibition observed in the affected samples. Notably, MT treatment successfully reinstates Src/PI3K/ERK signaling, thereby offering a potential underlying mechanism for the protective effects of MT against VPA-induced NTDs. In summary, our current study substantiates the considerable protective potential of MT in mitigating VPA-triggered NTDs, thereby offering valuable strategies for the clinical management of VPA-related birth defects.


Asunto(s)
Melatonina , Defectos del Tubo Neural , Embarazo , Femenino , Niño , Humanos , Ácido Valproico , Melatonina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/prevención & control , Estrés Oxidativo , Transducción de Señal
2.
Am J Otolaryngol ; 45(4): 104342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703609

RESUMEN

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.


Asunto(s)
Inteligencia Artificial , Laringoscopía , Leucoplasia , Pliegues Vocales , Humanos , Pliegues Vocales/diagnóstico por imagen , Pliegues Vocales/patología , Laringoscopía/métodos , Masculino , Leucoplasia/diagnóstico , Leucoplasia/patología , Femenino , Persona de Mediana Edad , Anciano , Diagnóstico por Computador/métodos , Aprendizaje Automático , Diagnóstico Diferencial , Adulto , Algoritmos , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/diagnóstico por imagen
3.
Small ; 19(17): e2207313, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36709424

RESUMEN

Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.

4.
Exp Cell Res ; 417(1): 113196, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561787

RESUMEN

Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Neoplasias Encefálicas , Glioblastoma , Proteínas de Microfilamentos/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35898000

RESUMEN

In the context of behavior recognition, the emerging bed-exit monitoring system demands a rapid deployment in the ward to support mobility and personalization. Mobility means the system can be installed and removed as required without construction; personalization indicates human body tracking is limited to the bed region so that only the target is monitored. To satisfy the above-mentioned requirements, the behavior recognition system aims to: (1) operate in a small-size device, typically an embedded system; (2) process a series of images with narrow fields of view (NFV) to detect bed-related behaviors. In general, wide-range images are preferred to obtain a good recognition performance for diverse behaviors, while NFV images are used with abrupt activities and therefore fit single-purpose applications. This paper develops an NFV-based behavior recognition system with low complexity to realize a bed-exit monitoring application on embedded systems. To achieve effectiveness and low complexity, a queueing-based behavior classification is proposed to keep memories of object tracking information and a specific behavior can be identified from continuous object movement. The experimental results show that the developed system can recognize three bed behaviors, namely off bed, on bed and return, for NFV images with accuracy rates of 95~100%.


Asunto(s)
Hospitales , Reconocimiento en Psicología , Humanos , Monitoreo Fisiológico/métodos
6.
Ecotoxicol Environ Saf ; 227: 112939, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34717220

RESUMEN

Haze problem is an important factor threatening human health. PM2.5 is the main culprit haze. 1-Nitropyrene (1-NP) is the main nitrated polycyclic aromatic hydrocarbon, the toxic component of PM2.5 particles. The effects of 1-NP on various organs and reproductive health have been extensively and deeply studied, but the effects of 1-NP on embryo implantation and endometrial receptivity remain to be determined. The purpose of this study was to investigate the adverse effects of 1-NP on mouse embryo implantation and human endometrial receptivity. In early pregnancy, CD1 mice were given 2 mg/kg 1-NP by oral gavage, which resulted in a decreased embryo implantation number on day 5, inhibited leukemic inhibitory factor (LIF)/STAT3 pathway, decreased expression of estrogen receptor and progesterone receptor, and disrupted regulation of uterine cell proliferation. In addition, in a human in vitro implantation model, 1-NP was found to significantly inhibit the adhesion rate between trophoblast spheroids and endometrial epithelial cells, possibly by inhibiting the expression of receptivity molecules in Ishikawa cells. Promoting reactive oxygen species (ROS) production may be an additional mechanism by which it inhibits trophoblast spheroid adhesion. In this study, we used an in vivo mouse pregnancy model and an in vitro human embryo implantation model to demonstrate that 1-NP can impair endometrial receptivity and compromise embryo implantation.


Asunto(s)
Implantación del Embrión , Endometrio , Animales , Femenino , Ratones , Embarazo , Pirenos , Especies Reactivas de Oxígeno , Útero
7.
J Integr Neurosci ; 19(3): 513-519, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33070532

RESUMEN

"Tianma" (Gastrodia) and "gouteng" (Uncaria) are both widely used to treat cerebral ischemia. At the same time, "ezhu" (Curcuma longa) or turmeric, is derived from the dried roots of C. longa. It is a polyphenol known for its anti-inflammatory effects and its promotion of blood vessel endothelial function. This study explored the neuroprotective effects of a water extract of "tianma", "gouteng", and "ezhu" against ischemic injury. Flow cytometry analysis showed that Gastrodia, Uncaria, and Curcuma reduced the proportion of apoptotic cells in CoCl2 induced B35 (P = 0.0027) and SH-SY5Y (P = 0.0006) cell sample relative to the respective control group. Western blot indicated that Gastrodia, Uncaria, and Curcuma upregulated the expression of Bcl-2 and inversely downregulated Bax and Caspase-3 (P < 0.001). The infarct volume observed in the Gastrodia, Uncaria, and Curcuma group was also decreased compared with the control group (P < 0.05). Immunofluorescence detection revealed a lower expression of Caspase-7 in the Gastrodia, Uncaria, and Curcuma group than in the control group, while expression was negligible in the sham group. Gastrodia, Uncaria, and Curcuma confer neuroprotective effects in CoCl2 induced B35/SH-SY5Y cells and a rat model of ischemia by way of its anti-apoptotic effects.


Asunto(s)
Isquemia Encefálica/prevención & control , Medicamentos Herbarios Chinos/administración & dosificación , Gastrodia , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Curcuma , Humanos , Ratas
8.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396303

RESUMEN

Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal-epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.


Asunto(s)
Adaptación Fisiológica , Cisplatino/farmacología , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos , Estrés del Retículo Endoplásmico , Neoplasias de la Boca/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Chaperón BiP del Retículo Endoplásmico , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Células Tumorales Cultivadas
9.
Biochem Biophys Res Commun ; 509(2): 617-623, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30606477

RESUMEN

Long non-coding RNAs (lncRNAs) play vital roles in the pathobiology of glioblastoma multiforme (GBM). Though radiotherapy remains the most effective component of multiple therapies for patients with GBM, lncRNAs conferring GBM radioresistance are less unknown. Here, the present study identified that the antisense transcript of hypoxia-inducible factor-1α (AHIF) was upregulated in GBM cells after radiotherapy. The deregulation of AHIF affected GBM cell clonogenic formation, DNA repair and apoptosis. Notably, knockdown of AHIF inhibited tumorigenesis after radiotherapy in vivo. Further biochemical analysis identified that AHIF regulated proteins associated with apoptosis after radiotherapy. Thus, the present data illustrate that suppression of AHIF increases radiosensitivity in GBM cells, which may be a potential diagnostic and therapeutic target for GBM patients.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioblastoma/genética , Glioblastoma/radioterapia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Animales , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Tolerancia a Radiación , Regulación hacia Arriba/efectos de la radiación
10.
J Craniofac Surg ; 30(5): e400-e402, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31299791

RESUMEN

The study reported a case of an intrasellar arachnoid cyst with visual disturbances as the main symptom. Arachnoid cyst is a common intracranial benign space-occupying lesion, but rarely seen in intrasellar region with less than 100 cases reported available in English language literature. Therefore, it is still controversial about the diagnosis and treatment of such patients. This article reviewed previous literature and discussed the differential diagnosis and surgical strategies of intrasellar arachnoid cyst in combination with our own case.


Asunto(s)
Quistes Aracnoideos/diagnóstico , Diagnóstico Diferencial , Adulto , Quistes Aracnoideos/cirugía , Femenino , Humanos , Silla Turca/patología
11.
J Craniofac Surg ; 30(8): 2393-2395, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31033685

RESUMEN

A 52-year-old male who had chronic hypertension for several years presented with abrupt epistaxis. The CT scan revealed a 40 mm × 40 mm mass in the nasal cavity intended to the maxillary sinus and the base of skull. Nasal endoscope biopsy and serum/urinary catecholamine detection conformed an ectopic noradrenaline-secreting pheochromocytoma. The present research was to discuss the clinical characteristics of the rare pheochromocytoma and the palliative interventional embolization for it.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/terapia , Cavidad Nasal/patología , Feocromocitoma/terapia , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/metabolismo , Embolización Terapéutica , Epistaxis/etiología , Humanos , Masculino , Seno Maxilar , Persona de Mediana Edad , Norepinefrina/metabolismo , Cuidados Paliativos , Feocromocitoma/complicaciones , Feocromocitoma/metabolismo , Tomografía Computarizada por Rayos X
12.
Small ; 11(19): 2314-22, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25641716

RESUMEN

Silicon (Si) has been perceived as a promising anode material for lithium-ion batteries for decades due to its superior theoretical capacity, environmental benignity, and earth abundance. To accommodate the drastic volume expansion during lithiation, which is the primary drawback leading to poor cycling life, a novel structural design via fabricating the Marimo-like carbon nanotubes frameworks with silicon nanoparticle (SiNP) filling in internal space has been developed. This facile fabrication procedure involves an in-spaced polymerization process through ex situ polymerization, using pyrrole monomers with a soft organic template in which well-dispersed SiNPs are present. Carbonization post-treatment is then performed to construct rigid conductive networks. The thus-fabricated 3D Marimo-like hybrid structure exhibits a remarkably improved electrochemical performance compared with that of the simple ball-milling method, which mainly originates from their structural advantages, including the built-in buffer spaces and the robust line-to-line contact mode between the components. The state-of-the-art structure exhibits an optimal high-rate capability (422 mAh g(-1) at a current rate of 2 A g(-1)) and long cycling stability (916 mAh g(-1) for 200th cycles at a current rate of 0.2 A g(-1)) and achieves the requirements for industrial production with the facile and cost-effective synthetic approach.

13.
Comput Methods Programs Biomed ; 246: 108051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301394

RESUMEN

BACKGROUND AND OBJECTIVE: Symptom descriptions by ordinary people are often inaccurate or vague when seeking medical advice, which often leads to inaccurate preliminary clinical diagnoses. To address this issue, we propose a deep learning model named the knowledgeable diagnostic transformer (KDT) for the natural language processing (NLP)-based preliminary clinical diagnoses. METHODS: The KDT extracts symptom-disease relation triples (h,r,t) from patient symptom descriptions by using a proposed bipartite medical knowledge graph (bMKG). To avoid too many relation triples causing the knowledge noise issue, we propose a knowledge inclusion-exclusion approach (KIA) to eliminate undesirable triples (a knowledge filtering layer). Next, we combine token embedding techniques with the transformer model to predict the diseases that patients may encounter. RESULTS: To train the KDT, a medical diagnosis question-answering dataset (named MDQA dataset) containing large-scale, high-quality questions (patient syndrome description) and answering (diagnosis) corpora with 2.6M entries (1.07GB in size) in Mandarin was built. We also train the KDT with the National Institutes of Health (NIH) English dataset (MedQuAD). The KDT marks a transformative approach by achieving a remarkable accuracy of 99% for different evaluation metrics when compared with the baseline transformers used for the NLP-based preliminary clinical diagnoses approaches. CONCLUSIONS: In essence, our study not only demonstrates the effectiveness of the KDT in enhancing diagnostic precision but also underscores its potential to revolutionize the field of preliminary clinical diagnoses. By harnessing the power of knowledge-based approaches and advanced NLP techniques, we have paved the way for more accurate and reliable diagnoses, ultimately benefiting both healthcare providers and patients. The KDT has the potential to significantly reduce misdiagnoses and improve patient outcomes, marking a pivotal advancement in the realm of medical diagnostics.


Asunto(s)
Benchmarking , Procesamiento de Lenguaje Natural , Humanos , Bases del Conocimiento , Lenguaje , Derivación y Consulta , Estados Unidos
14.
J Cataract Refract Surg ; 50(6): 618-623, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350234

RESUMEN

PURPOSE: To test a cataract shadow projection theory and validate it by developing a deep learning algorithm that enables automatic and stable posterior polar cataract (PPC) screening using fundus images. SETTING: Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei, Taiwan. DESIGN: Retrospective chart review. METHODS: A deep learning algorithm to automatically detect PPC was developed based on the cataract shadow projection theory. Retrospective data (n = 546) with ultra-wide field fundus images were collected, and various model architectures and fields of view were tested for optimization. RESULTS: The final model achieved 80% overall accuracy, with 88.2% sensitivity and 93.4% specificity in PPC screening on a clinical validation dataset (n = 103). CONCLUSIONS: This study established a significant relationship between PPC and the projected shadow, which may help surgeons to identify potential PPC risks preoperatively and reduce the incidence of posterior capsular rupture during cataract surgery.


Asunto(s)
Algoritmos , Catarata , Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Catarata/diagnóstico , Fondo de Ojo , Masculino , Femenino , Anciano , Persona de Mediana Edad
15.
Laryngoscope ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801129

RESUMEN

OBJECTIVES: Vocal fold leukoplakia (VFL) is a precancerous lesion of laryngeal cancer, and its endoscopic diagnosis poses challenges. We aim to develop an artificial intelligence (AI) model using white light imaging (WLI) and narrow-band imaging (NBI) to distinguish benign from malignant VFL. METHODS: A total of 7057 images from 426 patients were used for model development and internal validation. Additionally, 1617 images from two other hospitals were used for model external validation. Modeling learning based on WLI and NBI modalities was conducted using deep learning combined with a multi-instance learning approach (MIL). Furthermore, 50 prospectively collected videos were used to evaluate real-time model performance. A human-machine comparison involving 100 patients and 12 laryngologists assessed the real-world effectiveness of the model. RESULTS: The model achieved the highest area under the receiver operating characteristic curve (AUC) values of 0.868 and 0.884 in the internal and external validation sets, respectively. AUC in the video validation set was 0.825 (95% CI: 0.704-0.946). In the human-machine comparison, AI significantly improved AUC and accuracy for all laryngologists (p < 0.05). With the assistance of AI, the diagnostic abilities and consistency of all laryngologists improved. CONCLUSIONS: Our multicenter study developed an effective AI model using MIL and fusion of WLI and NBI images for VFL diagnosis, particularly aiding junior laryngologists. However, further optimization and validation are necessary to fully assess its potential impact in clinical settings. LEVEL OF EVIDENCE: 3 Laryngoscope, 2024.

16.
Sci Total Environ ; 881: 163135, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37003320

RESUMEN

Electroflotation-membrane separation system with a conductive membrane has recently emerged as a promising technology for oily wastewater treatment. However, the conductive membrane prepared by electroless plating often suffers the problems of low stability and high activation cost. To solve these problems, this work proposed a new strategy regarding surface metallization of polymeric membrane by surface nickel-catalyzed electroless nickel plating of nickel­copper­phosphorus alloys for the first time. It was found that, addition of copper source remarkably enhanced the membranes' hydrophilicity, corrosion resistance and fouling resistance. The Ni-Cu-P membrane had an underwater oil contact angle of up to 140°, and simultaneously possessed rejection rate > 98 % with rather high flux of 65,663.0 L·m-2·h-1 and excellent cycling stability when separating n-hexane/water mixtures under gravity drive. The permeability is higher than the state-of-the-art membranes for oil/water separation. The Ni-Cu-P membrane as the cathode can be assembled into an electroflotation-membrane separation system, allowing to separate oil-in-water emulsion with 99 % rejection. Meanwhile, the applied electric field significantly improved membrane flux and fouling resistance (flux recovery up to 91 %) when separate kaolin suspensions. Polarization curve and Nyquist curve analysis further confirmed that addition of Cu element obviously enhanced corrosion resistance of the Ni modified membrane. This work provided a novel strategy to make up high-efficiency membranes for oily wastewater treatment.

17.
Braz J Med Biol Res ; 56: e12638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37493769

RESUMEN

RNA interference (RNAi) treatment has been proven to be an important therapeutic approach in cancer based on downregulation of target-oncogenes, but its clinical efficacy still needs further investigation. LMP1 is usually presented by Epstein-Barr virus (EBV)-positive tumor cells like EBV-associated nasopharyngeal carcinoma (NPC) and acts as an oncogene in tumorigenesis. However, the mechanism of LMP1 as a proto-oncogene in nasopharyngeal carcinoma is still unclear. Two sequence-specific shRNAs 1 and 2 were designed to target the different nucleotide loci of EBV latent antigen LMP1 gene and a series of in vivo and in vitro experiments were performed to investigate the therapeutic effect of sequence-specific shRNAs targeting LMP1 and its related molecular mechanisms in EBV-positive NPC. LMP1-shRNA2 generated a truncated LMP1 mRNA and protein, whereas LMP1-shRNA1 completely blocked LMP1 mRNA and protein expression. Both LMP1-shRNAs inhibited the proliferation and migration of NPC cells overexpressing LMP1 (NPC-LMP1) as well as the NPC-associated myeloid-derived suppressor cell (MDSC) expansion in vitro. However, LMP1-shRNA2 maintained the immunogenicity of NPC-LMP1 cells, which provoked MHC-class I-dependent T cell recognition. LMP1-shRNAs inhibited tumor growth in nude mice but did not reach statistical significance compared to control groups, while the LDH nanoparticle loaded LMP1-shRNAs and the antigen-specific T cells induced by NPC-LMP1 cells treated with LMP1-shRNA2 significantly reduced tumor growth in vivo. LMP1-RNAi-based anti-tumor therapy could be a new hope for the clinical efficacy of RNAi treatment of tumors like NPC.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Animales , Ratones , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Carcinoma/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Interferencia de ARN , Ratones Desnudos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Mensajero/metabolismo , Línea Celular Tumoral
18.
Sci Total Environ ; 857(Pt 2): 159183, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36202361

RESUMEN

Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO3-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.01° to 14.94°) and underwater superoleophobicity (underwater contact angle (UOCA) > 155°). The optimized TA-Ti(IV)-CaCO3 modified membrane possessed perfect water permeation to various oil/water emulsions (e.g., 355.7 L·m-2·h-1 for gasoline emulsion) under gravity with superior separation efficiency (>98.8 %), leading the way in oil/water emulsion separation performance of PVDF membranes modified with polyphenolic surfaces to our knowledge. Moreover, the modified membrane displayed rather high flux recovery after eight cycles of filtration while maintaining the original excellent separation efficiency. The modification process proposed in this study is almost independent of the nature of the substrate, and meets the demand for simple, inexpensive, rapid preparation of highly hydrophilic antifouling membranes, showing abroad application prospect for oil-water emulsion separation/treatment.


Asunto(s)
Membranas Artificiales , Taninos , Humanos , Emulsiones , Biomineralización , Titanio
19.
Heliyon ; 9(8): e18472, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520946

RESUMEN

Background: With age, people begin to experience deterioration in standing balance, especially when sensory input is suddenly removed or added. Here, we sought to explore the effects of age on postural performance and postural control strategies. Methods: The convenience sample consisted of 15 young, 10 middle-aged, and 14 elderly healthy adults. They were instructed to stand with their feet together in four randomly administered conditions involving visual input removal/addition and single-/dual-tasking. Dual-tasking involved continuous subtraction by 3s. Results: Postural sway displacement in the two older groups seemed larger than that in the younger group; however, neither the main effect of group (F2, 36 = 1.152, p = .327) nor the group × time interaction effect (F4, 27 = 0.229, p = .922) was significant. Greater stiffness of the lower leg muscles was observed in the vision-addition condition than in the vision-removal condition in only the elderly group (t13 = -2.755, p = .016). The dual-tasking condition resulted in smaller sway displacement (F1, 36 = 7.690, p = .009) and greater muscle stiffness (F1, 36 = 5.495, p = .025). In the vision-removal condition, the increase in muscle stiffness due to dual-tasking was significantly larger in the middle-aged (t9 = -3.736, p = .005) and elderly groups (t13 = -2.512, p = .026). Conclusions: In healthy older individuals, age-related changes were observed in control strategies used to maintain standing balance upon changes in visual input. The dual-task paradigm induced the use of an ankle-stiffening strategy in middle-aged and elderly adults.

20.
Mol Biotechnol ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751129

RESUMEN

Investigations of protein-protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers. This study describes the introduction of Tagged blue fluorescent protein 2 (TagBFP2) into the BiFC assay to verify the interaction between two proteins, with Enhanced yellow fluorescent protein (EYFP) employed as a positive control. Both fluorescent proteins demonstrated optimal performance in this study. Compared to EYFP, the BiFC system utilizing TagBFP2 yielded a higher signal-to-noise ratio, which facilitated differentiation of the signal of PPIs from noise and enabled employment of other fluorescent proteins within the BiFC assay. Notably, the utilization of a fluorescent secondary antibody in immunofluorescence applications or the tagging of an interest protein with a fluorescent protein occupied the green or yellow channel. Overall, the present article introduces a BiFC assay that is highly straightforward, reliable, and replicable, with the ability to be completed within 1 week. This method requires neither expensive instrumentation nor technical skills of a high order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA