Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.249
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 632(8027): 1032-1037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39198671

RESUMEN

Superconductivity in a highly correlated kagome system has been theoretically proposed for years (refs. 1-5), yet the experimental realization is hard to achieve6,7. The recently discovered vanadium-based kagome materials8, which exhibit both superconductivity9-11 and charge-density-wave orders12-14, are nonmagnetic8,9 and weakly correlated15,16. Thus these materials are unlikely to host the exotic superconductivity theoretically proposed. Here we report the discovery of a chromium-based kagome metal, CsCr3Sb5, which is contrastingly featured with strong electron correlations, frustrated magnetism and characteristic flat bands close to the Fermi level. Under ambient pressure, this kagome metal undergoes a concurrent structural and magnetic phase transition at 55 K, with a stripe-like 4a0 structural modulation. At high pressure, the phase transition evolves into two transitions, possibly associated with charge-density-wave and antiferromagnetic spin-density-wave orderings. These density-wave-like orders are gradually suppressed with pressure and, remarkably, a superconducting dome emerges at 3.65-8.0 GPa. The maximum of the superconducting transition temperature, Tcmax = 6.4 K, appears when the density-wave-like orders are completely suppressed at 4.2 GPa, and the normal state exhibits a non-Fermi-liquid behaviour, reminiscent of unconventional superconductivity and quantum criticality in iron-based superconductors17,18. Our work offers an unprecedented platform for investigating superconductivity in correlated kagome systems.

2.
Mol Cell ; 82(15): 2844-2857.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662396

RESUMEN

Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.


Asunto(s)
Lisosomas , Succinatos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Humanos , Inmunidad Innata , Lisosomas/metabolismo , Ratones , Succinatos/metabolismo , Succinatos/farmacología
3.
Am J Hum Genet ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39362218

RESUMEN

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet most of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n = 158), Europeans (EUR, n = 408), and East Asians (EAS, n = 217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs linked to 1,276 genes and 198,769 SNPs were found to be specific to non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified five risk genes (SFXN2, VPS37B, DENR, FTCDNL1, and NT5DC2) and three potential regulatory variants in known risk genes (CNNM2, MTRFR, and MPHOSPH9) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of risk genes in SCZ.

4.
Nature ; 598(7879): 174-181, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616072

RESUMEN

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Asunto(s)
Encéfalo/citología , Forma de la Célula , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Atlas como Asunto , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/embriología , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Neurogénesis , Neuroglía/citología , Neuronas/citología , RNA-Seq , Reproducibilidad de los Resultados
5.
Hum Mol Genet ; 33(9): 752-767, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38271183

RESUMEN

Mutations in the Kunitz-type serine protease inhibitor HAI-2, encoded by SPINT2, are responsible for the pathogenesis of syndromic congenital sodium diarrhea (SCSD), an intractable secretory diarrhea of infancy. Some of the mutations cause defects in the functionally required Kunitz domain 1 and/or subcellular targeting signals. Almost all SCSD patients, however, harbor SPINT2 missense mutations that affect the functionally less important Kunitz domain 2. How theses single amino acid substitutions inactivate HAI-2 was, here, investigated by the doxycycline-inducible expression of three of these mutants in HAI-2-knockout Caco-2 human colorectal adenocarcinoma cells. Examining protein expressed from these HAI-2 mutants reveals that roughly 50% of the protein is synthesized as disulfide-linked oligomers that lose protease inhibitory activity due to the distortion of the Kunitz domains by disarrayed disulfide bonding. Although the remaining protein is synthesized as monomers, its glycosylation status suggests that the HAI-2 monomer remains in the immature, lightly glycosylated form, and is not converted to the heavily glycosylated mature form. Heavily glycosylated HAI-2 possesses full anti-protease activity and appropriate subcellular targeting signals, including the one embedded in the complex-type N-glycan. As predicted, these HAI-2 mutants cannot suppress the excessive prostasin proteolysis caused by HAI-2 deletion. The oligomerization and glycosylation defects have also been observed in a colorectal adenocarcinoma line that harbors one of these SPINT2 missense mutations. Our study reveals that the abnormal protein folding and N-glycosylation can cause widespread HAI-2 inactivation in SCSD patents.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Serina Endopeptidasas , Humanos , Glicoproteínas de Membrana/metabolismo , Células CACO-2 , Glicosilación , Mutación , Diarrea/congénito , Pliegue de Proteína , Neoplasias Colorrectales/genética , Disulfuros , Proteínas Inhibidoras de Proteinasas Secretoras/genética
6.
J Biol Chem ; 300(4): 107139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447792

RESUMEN

Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.


Asunto(s)
Abietanos , Glucólisis , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Proteínas de Unión a Hormona Tiroide , Animales , Humanos , Masculino , Ratones , Abietanos/farmacología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Hormonas Tiroideas/metabolismo
7.
J Biol Chem ; 300(5): 107235, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552739

RESUMEN

Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.


Asunto(s)
Sordera , Mitocondrias , ARN de Transferencia de Fenilalanina , Humanos , Autofagia , Sordera/genética , Sordera/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales , Mutación , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ARN de Transferencia de Fenilalanina/genética
8.
Hum Mol Genet ; 32(9): 1539-1551, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611011

RESUMEN

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted eye disease due to the degeneration of retinal ganglion cells (RGCs). Mitochondrial 11778G > A mutation is the most common LHON-associated mitochondrial DNA (mtDNA) mutation. Our recent studies demonstrated some LHON families manifested by synergic interaction between m.11778G > A mutation and YARS2 allele (c.572G > T, p.Gly191Val) encoding mitochondrial tyrosyl-tRNA synthetase. However, the RGC-specific effects of LHON-associated mtDNA mutations remain elusive and there is no highly effective therapy for LHON. Here, we generated patients-derived induced pluripotent stem cells (iPSCs) from fibroblasts derived from a Chinese LHON family (both m.11778G > A and c.572G > T mutations, only m.11778G > A mutation, and control subject). The c.572G > T mutation in iPSC lines from a syndromic individual was corrected by CRISPR/Cas9. Those iPSCs were differentiated into neural progenitor cells and subsequently induced RGC-like cells using a stepwise differentiation procedure. Those RGC-like cells derived from symptomatic individual harboring both m.11778G > A and c.572G > T mutations exhibited greater defects in neuronal differentiation, morphology including reduced area of soma, numbers of neurites and shortened length of axons, electrophysiological properties than those in cells bearing only m.11778G > A mutation. Furthermore, these RGC-like cells revealed more drastic reductions in oxygen consumption rates, levels of mitochondrial ATP and increasing productions of reactive oxygen species than those in other cell models. These mitochondrial dysfunctions promoted the apoptotic process for RGC degenerations. Correction of YARS2 c.572G > T mutation rescued deficiencies of patient-derived RGC-like cells. These findings provide new insights into pathophysiology of LHON arising from RGC-specific mitochondrial dysfunctions and step toward therapeutic intervention for this disease.


Asunto(s)
ADN Mitocondrial , Atrofia Óptica Hereditaria de Leber , Células Ganglionares de la Retina , Tirosina-ARNt Ligasa , Humanos , Alelos , ADN Mitocondrial/genética , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Mitocondrias/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/fisiopatología , Atrofia Óptica Hereditaria de Leber/terapia , Tirosina-ARNt Ligasa/genética
9.
Mol Psychiatry ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724566

RESUMEN

Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.

10.
Circ Res ; 133(5): 400-411, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492967

RESUMEN

BACKGROUND: FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS: We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS: Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (ß1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS: Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.


Asunto(s)
Actinas , Cardiomiopatías , Ratones , Animales , Filaminas/genética , Filaminas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cardiomiopatías/genética , Miocitos Cardíacos/metabolismo , Mutación , Mamíferos
11.
EMBO Rep ; 24(12): e57176, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870400

RESUMEN

Chronic stress induces depression and insulin resistance, between which there is a bidirectional relationship. However, the mechanisms underlying this comorbidity remain unclear. White adipose tissue (WAT), innervated by sympathetic nerves, serves as a central node in the interorgan crosstalk through adipokines. Abnormal secretion of adipokines is involved in mood disorders and metabolic morbidities. We describe here a brain-sympathetic nerve-adipose circuit originating in the hypothalamic paraventricular nucleus (PVN) with a role in depression and insulin resistance induced by chronic stress. PVN neurons are labelled after inoculation of pseudorabies virus (PRV) into WAT and are activated under restraint stress. Chemogenetic manipulations suggest a role for the PVN in depression and insulin resistance. Chronic stress increases the sympathetic innervation of WAT and downregulates several antidepressant and insulin-sensitizing adipokines, including leptin, adiponectin, Angptl4 and Sfrp5. Chronic activation of the PVN has similar effects. ß-adrenergic receptors translate sympathetic tone into an adipose response, inducing downregulation of those adipokines and depressive-like behaviours and insulin resistance. We finally show that AP-1 has a role in the regulation of adipokine expression under chronic stress.


Asunto(s)
Resistencia a la Insulina , Núcleo Hipotalámico Paraventricular , Ratas , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Depresión , Obesidad/metabolismo , Adipoquinas/metabolismo , Adipoquinas/farmacología
12.
Proc Natl Acad Sci U S A ; 119(22): e2118240119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35613055

RESUMEN

Adult hippocampal neurogenesis is critical for learning and memory, and aberrant adult neurogenesis has been implicated in cognitive decline associated with aging and neurological diseases [J. T. Gonçalves, S. T. Schafer, F. H. Gage, Cell 167, 897­914 (2016)]. In previous studies, we observed that the delayed-rectifier voltage-gated potassium channel Kv1.1 controls the membrane potential of neural stem and progenitor cells and acts as a brake on neurogenesis during neonatal hippocampal development [S. M. Chou et al., eLife 10, e58779 (2021)]. To assess the role of Kv1.1 in adult hippocampal neurogenesis, we developed an inducible conditional knockout mouse to specifically remove Kv1.1 from adult neural stem cells via tamoxifen administration. We determined that Kv1.1 deletion in adult neural stem cells causes overproliferation and depletion of radial glia-like neural stem cells, prevents proper adult-born granule cell maturation and integration into the dentate gyrus, and moderately impairs hippocampus-dependent contextual fear learning and memory. Taken together, these findings support a critical role for this voltage-gated ion channel in adult neurogenesis.


Asunto(s)
Condicionamiento Clásico , Hipocampo , Canal de Potasio Kv.1.1 , Células-Madre Neurales , Neurogénesis , Neuronas , Animales , Miedo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/fisiología , Ratones , Ratones Noqueados , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
13.
Nano Lett ; 24(13): 3866-3873, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442405

RESUMEN

The low wear resistance of macroscale graphene coatings does not match the ultrahigh mechanical strength and chemical inertness of the graphene layer itself; however, the wear mechanism responsible for this issue at low mechanical stress is still unclear. Here, we demonstrate that the susceptibility of the graphene monolayer to wear at its atomic step edges is governed by the mechanochemistry of frictional interfaces. The mechanochemical reactions activated by chemically active SiO2 microspheres result in atomic attrition rather than mechanical damage such as surface fracture and folding by chemically inert diamond tools. Correspondingly, the threshold contact stress for graphene edge wear decreases more than 30 times to the MPa level, and mechanochemical wear can be described well with the mechanically assisted Arrhenius-type kinetic model, i.e., exponential dependence of the removal rate on the contact stress. These findings provide a strategy for improving the antiwear of graphene-based materials by reducing the mechanochemical interactions at tribological interfaces.

14.
Nano Lett ; 24(40): 12620-12627, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39324698

RESUMEN

TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.

15.
Nano Lett ; 24(19): 5774-5782, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709116

RESUMEN

Flexible shortwave infrared detectors play a crucial role in wearable devices, bioimaging, automatic control, etc. Commercial shortwave infrared detectors face challenges in achieving flexibility due to the high fabrication temperature and rigid material properties. Herein, we develop a high-performance flexible Te0.7Se0.3 photodetector, resulting from the unique 1D crystal structure and small elastic modulus of Te-Se alloying. The flexible photodetector exhibits a broad-spectrum response ranging from 365 to 1650 nm, a fast response time of 6 µs, a broad linear dynamic range of 76 dB, and a specific detectivity of 4.8 × 1010 Jones at room temperature. The responsivity of the flexible detector remains at 93% of its initial value after bending with a small curvature of 3 mm. Based on the optimized flexible detector, we demonstrate its application in shortwave infrared imaging. These results showcase the great potential of Te0.7Se0.3 photodetectors for flexible electronics.

16.
J Cell Mol Med ; 28(6): e18156, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429902

RESUMEN

This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.


Asunto(s)
Nefropatías Diabéticas , Interleucina-17 , Humanos , Fosfatidilinositol 3-Quinasas , Biología Computacional , Aprendizaje Automático
17.
J Cell Mol Med ; 28(14): e18576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054569

RESUMEN

Diagnosis of intravascular large B-cell lymphoma (IVLBCL) is a challenge due to its heterogeneous clinical presentation and lack of specific markers. This retrospective study investigated the utility of circulating tumour DNA (ctDNA) sequencing for diagnosing IVLBCL and analysing its mutation landscape. A cohort of 34 IVLBCL patients enrolled and underwent plasma ctDNA targeted sequencing. The median plasma ctDNA concentration was 135.0 ng/mL, significantly higher than that in diffuse large B-cell lymphoma (DLBCL) controls. Correlations were found between ctDNA concentration and disease severity indicators, LDH and SF. Mutation analysis revealed frequent mutations in B-cell receptor and NF-κB signalling pathways, including MYD88 (56%), CD79B (44%), TNFAIP3 (38%) and IRF4 (29%). CNS involvement was significantly related with BCL6 and CD58 mutation. Patients with complicated hemophagocytic lymphohistiocytosis had significantly higher mutation rates in B2M. Comparison with DLBCL subtypes showed distinctive mutation profiles in IVLBCL. Moreover, plasma ctDNA detected more mutations with higher variant allele fraction than tissue DNA, suggesting its superiority in sensitivity and accessibility. Dynamic monitoring of ctDNA during treatment correlated with therapeutic responses. This study revealed the role of ctDNA in IVLBCL diagnosis, mutation analysis, and treatment monitoring, offering a promising avenue for improving patient diagnosis in this rare lymphoma subtype.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Mutación , Humanos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Femenino , Masculino , Persona de Mediana Edad , Anciano , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/sangre , Análisis Mutacional de ADN/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Adulto , Estudios Retrospectivos , Anciano de 80 o más Años
18.
J Cell Mol Med ; 28(3): e18094, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214430

RESUMEN

Lung cancer is a leading cause of cancer-related deaths worldwide. Recent studies have identified pyroptosis, a type of programmed cell death, as a critical process in the development and progression of lung cancer. In this study, we investigated the effect of EEBR, a new compound synthesized by our team, on pyroptosis in non-small cell lung cancer cells (NSCLC) and the underlying molecular mechanisms. Our results demonstrated that EEBR significantly reduced the proliferation and metastasis of NSCLC cells in vitro. Moreover, EEBR-induced pyroptosis in NSCLC cells, as evidenced by cell membrane rupture, the release of cytokines such as interleukin-18 and interleukin-1 beta and the promotion of Gasdermin D cleavage in a Caspase-1-dependent manner. Furthermore, EEBR promoted the nuclear translocation of NF-κB and upregulated the protein level of NLRP3. Subsequent studies revealed that EEBR-induced pyroptosis was suppressed by the inhibition of NF-κB. Finally, EEBR effectively suppressed the growth of lung cancer xenograft tumours by promoting NSCLC pyroptosis in animal models. Taken together, our findings suggest that EEBR induces Caspase-1-dependent pyroptosis through the NF-κB/NLRP3 signalling cascade in NSCLC, highlighting its potential as a candidate drug for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Piroptosis , Caspasa 1/metabolismo , Inflamasomas/metabolismo
19.
J Am Chem Soc ; 146(5): 3125-3135, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38288596

RESUMEN

The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone (3NTF) undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm-1. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant nπ* character of the tautomeric lowest excited state. Herein, based on the 3-mercaptoflavone scaffold and π-elongation concept, a new series of 4'-substituted-7-diethylamino-3-mercaptoflavones, NTFs, was designed and synthesized with varied H-bond strength and 690-720 nm tautomeric emission upon ultraviolet (UV) excitation in cyclohexane. The order of their H-bonding strength was experimentally determined to be N-NTF < O-NTF < H-NTF < F-NTF, while the rate of -SH ESIPT measured by fluorescence upconversion was F-NTF (398 fs)-1 < H-NTF (232 fs)-1 < O-NTF (123 fs)-1 < N-NTF (101 fs)-1 in toluene. Unexpectedly, the strongest H-bonded F-NTF gives the slowest ESIPT, which does not conform to the traditional ESIPT model. The results are rationalized by the trend of carbonyl oxygen basicity rather than -SH acidity. Namely, the thiol acidity relevant to the H-bond strength plays a minor role in the driving force of ESIPT. Instead, the proton-accepting strength governs ESIPT. That is to say, the noncanonical thiol H-bonding system undergoes an unconventional type of ESIPT.

20.
J Am Chem Soc ; 146(25): 17032-17040, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38871344

RESUMEN

Layered double hydroxides (LDHs) are potential catalysts for water oxidation, and it is recognized that they undergo dynamic evolution during the operation. However, little is known about the interfacial behaviors at the nanoscale under working conditions nor the underlying effects on electrocatalytic performance. Herein, using electrochemical atomic force microscopy, we in situ visualize the heterogeneous evolution of LDH nanosheets during oxygen evolution reaction (OER). By further combining density functional theory calculations, we elucidate the origin of the heterogeneous dynamics and their impact on the OER efficiency. Our findings demonstrate that NiCo LDHs transform to the catalytically active NiCoOx(OH)2-x phase during OER, and the redox transition between is accompanied by compressive and tensile strain, leading to in-plane contraction and reversible expansion of the nanosheets. Nonisotropic strain and out-of-plane strain relaxation due to defects and interparticle interactions result in cracking and wrinkling in the nanostructure, which is responsible for the partial activation and long-term deterioration of LDH electrocatalysts toward the OER. With this knowledge, we suggest and validate that engineering defects can precisely tune these dynamic behaviors, improving the OER activity and stability among LDH-based electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA