Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Am Chem Soc ; 146(9): 6307-6316, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381876

RESUMEN

Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.


Asunto(s)
Cobre , Glicina , Cobre/química , Alquilación , Péptidos/química , Catálisis
2.
Bioorg Chem ; 147: 107340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593532

RESUMEN

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Asunto(s)
Fármacos Anti-VIH , Compuestos de Bifenilo , Diseño de Fármacos , Transcriptasa Inversa del VIH , VIH-1 , Quinazolinas , Inhibidores de la Transcriptasa Inversa , Solubilidad , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/síntesis química , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Relación Dosis-Respuesta a Droga , Farmacorresistencia Viral/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Relación Estructura-Actividad
3.
Bioorg Chem ; 148: 107495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805850

RESUMEN

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Asunto(s)
Diseño de Fármacos , VIH-1 , Simulación del Acoplamiento Molecular , Pirimidinas , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , VIH-1/efectos de los fármacos , VIH-1/enzimología , Humanos , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Estructura Molecular , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731530

RESUMEN

Hydroformylation of olefins is widely used in the chemical industry due to its versatility and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.

5.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731613

RESUMEN

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Asunto(s)
Fármacos Anti-VIH , Simulación del Acoplamiento Molecular , Pirimidinas , Relación Estructura-Actividad Cuantitativa , Pirimidinas/química , Pirimidinas/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/síntesis química , Humanos , Simulación de Dinámica Molecular , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Tiazoles/química , Tiazoles/farmacología , Estructura Molecular
6.
Angew Chem Int Ed Engl ; 63(4): e202313952, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37994255

RESUMEN

16ß-Methylcorticoids are among the most important glucocorticoid steroids for the treatment of various dermatological disorders, respiratory infections, and other allergic reactions elicited during inflammatory responses of the human body. Betamethasone dipropionate, clobetasol propionate, and beclomethasone dipropionate are particularly noteworthy for their synthetic intractability. Despite five decades of research, these 16ß-methylcorticoids have remained challenging synthetic targets owing to insurmountable issues of reactivity, selectivity, and cost efficiency associated with all previously explored strategies. We herein report our practicability-oriented strategy toward the unified stereoselective synthesis of 16ß-methylcorticoids in 12.6-14.0 % overall yield from commercially available 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). In this approach, the chiral C16ß-Me and C17α-OH groups of the corticosteroid D ring were installed via a substrate-controlled diastereo- and enantioselective Mn-catalyzed oxidation-reduction hydration of Δ4,9(11),16 -triene-3,20-dione. The C1-C2 double bond of the corticosteroid A ring was constructed using an unprecedented engineered 3-ketosteroid-Δ1 -dehydrogenase (MK4-KstD)-catalyzed regioselective Δ1 -dehydrogenation of Δ4,9(11) -diene-3,21-dione. This strategy provides a general method and a key precursor for the divergent synthesis of a variety of glucocorticoids and related steroidal drugs.


Asunto(s)
Beclometasona , Clobetasol , Humanos , Clobetasol/uso terapéutico , Betametasona/uso terapéutico , Esteroides , Corticoesteroides
7.
Angew Chem Int Ed Engl ; : e202407149, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949229

RESUMEN

This paper describes a concise, asymmetric and stereodivergent total synthesis of tacaman alkaloids. A key step in this synthesis is the biocatalytic Baeyer-Villiger oxidation of cyclohexanone, which was developed to produce seven-membered lactones and establish the required stereochemistry at the C14 position (92 % yield, 99 % ee, 500 mg scale). Cis- and trans-tetracyclic indoloquinolizidine scaffolds were rapidly synthesized through an acid-triggered, tunable acyl-Pictet-Spengler type cyclization cascade, serving as the pivotal reaction for building the alkaloid skeleton. Computational results revealed that hydrogen bonding was crucial in stabilizing intermediates and inducing different addition reactions during the acyl-Pictet-Spengler cyclization cascade. By strategically using these two reactions and the late-stage diversification of the functionalized indoloquinolizidine core, the asymmetric total syntheses of eight tacaman alkaloids were achieved. This study may potentially advance research related to the medicinal chemistry of tacaman alkaloids.

8.
Angew Chem Int Ed Engl ; : e202409004, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837495

RESUMEN

Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.

9.
J Org Chem ; 88(20): 14803-14808, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37792295

RESUMEN

Herein, we present a novel and ecofriendly biocatalytic approach for synthesizing efinaconazole (7), a clinically used antifungal agent. This method involves utilizing benzaldehyde lyase (BAL) to catalyze the crucial benzoin condensation step in the ketone precursor. Treating 2,4-difluorobenzaldehyde with BAL in the presence of thiamin-diphosphate (ThDP) and Mg2+ resulted in the formation of α-hydroxy ketone which then underwent the preparation of 7. This innovative approach not only provides a greener alternative but also offers significant advantages over the traditional chemical process. Through our efforts and development work, we have established efficient and scalable procedures that enable the production of 7 in a moderate 38% yield.


Asunto(s)
Tiamina Pirofosfato , Triazoles , Benzoína , Cetonas
10.
J Org Chem ; 88(6): 3802-3807, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36822154

RESUMEN

The organocatalytic asymmetric Morita-Baylis-Hillman (MBH) reaction of isatin derivatives with various vinyl sulfones is disclosed. Chiral sulfone-containing 3-hydroxyoxindoles were produced in good to high yields and with good to high ee's. This report displays an unprecedented example to apply activated alkenes with sulfone moiety other than carbonyl groups in asymmetric MBH reactions and provides an efficient strategy to incorporate the sulfone functional group for the synthesis of chiral 3-hydroxyoxindoles.

11.
Bioorg Chem ; 140: 106783, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595396

RESUMEN

Our recent great interest in developing 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) analogs for HIV therapy identified a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) 3 (EC50 = 0.01681 µM), but its therapeutic efficacy was limited by its poor anti-resistance potency. This prompted us to search for potential HEPT analogs with broad-spectrum activities, leading to the generation of a series of novel HEPT analogs through exploring the chemical space of the solvent - protein interface. Encouraging improvements in anti-resistance efficacy were observed in some of these analogs, with the most promising compound 7 g being 3 to 26 - fold more potent than 3 against five mutant strains (E138K, Y181C, L100I, K103N, and Y188L). This analog surpassed the activity and selectivity of compound 3 by approximately 2-fold (EC50 = 0.007468 µM, SI = 4260). Furthermore, it was found to demonstrate feeble inhibition of CYP and hERG in vitro, and no in vivo acute toxicity. This study will further enrich the structure-activity relationships (SARs) of the HEPT scaffold, providing new guidance for the development of NNRTIs.


Asunto(s)
VIH-1 , Vuelo Espacial , Relación Estructura-Actividad , Inhibidores de la Transcriptasa Inversa/farmacología , Solventes
12.
Bioorg Chem ; 133: 106413, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791619

RESUMEN

1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPTs) have been previously described as an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). In our continuously pursuing HEPT optimization efforts, a series of novel HEPTs, featuring -C(OH)CH2R, -CC, or -CHCH2R linker at the benzylic α-methylene unit, were developed as NNRTIs. Among these new HEPTs, the compound C20 with -CHCH3 group at the benzylic α-methylene unit conferred the highest potency toward WT HIV-1 and selectivity (EC50 = 0.23 µM, SI = 150.20), which was better than the lead compound HEPT (EC50 = 7 µM, SI = 106). Also, C20 was endowed with high efficacy against clinically relevant mutant strains (EC50(L100I) = 1.07 µM; EC50(K103N) = 4.33 µM; EC50(Y181C) = 5.57 µM; EC50(E138K) = 1.06 µM; EC50(F227L+V106A) = 5.45 µM) and wild-type HIV-1 reverse transcriptase (RT) with an IC50 value of 0.55 µM. Molecular docking and molecular dynamics simulations, as well as preliminary structure-activity relationship (SAR) analysis of these new compounds, provided a deeper insight into the key structural features of the interactions between HEPT analogs and HIV-1 RT and laid the foundation for further modification on HEPT scaffold.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de la Transcriptasa Inversa , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Transcriptasa Inversa del VIH , Simulación del Acoplamiento Molecular , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad , Timina
13.
Bioorg Chem ; 140: 106821, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659148

RESUMEN

To enhance the anti-HIV-1 efficacy and solubility of our previously documented NNRTI 1, a collection of innovative quinoline-substituted DAPY derivatives were devised using heteroaromatic replacement strategy. The results of biological evaluation revealed that the representative compound 5h possessed the highest inhibitory activity against wild-type HIV-1 and selectivity index (EC50 = 0.0018 µM, SI > 166667), which were obviously better than that of 1 (EC50 = 0.00978 µM, SI > 37764), NVP (EC50 = 0.059 µM, SI > 158), EFV (EC50 = 0.028 µM, SI > 269), and ETR (EC50 = 0.0029 µM, SI > 1519). The water solubility of compound 5h was remarkably improved, surpassing that of 1, ETR and RPV. Additionally, this compound exerted significantly enhanced anti-resistance potency, compared to 1, and displayed comparable activity to ETR against WT RT of HIV-1 (IC50 = 0.011 µM). To elucidate the underlying molecular mechanisms, molecular docking studies were conducted to investigate the crucial interactions between 5h and WT/mutant strains of HIV-1. These findings provide valuable insights and drive further advancements in the development of DAPYs for HIV therapy.


Asunto(s)
VIH-1 , Hidroxiquinolinas , Quinolinas , Solubilidad , Simulación del Acoplamiento Molecular , Quinolinas/farmacología , Naftalenos , Agua
14.
Bioorg Chem ; 136: 106549, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37119785

RESUMEN

Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Fármacos Anti-VIH , Inhibidores de la Proteasa del VIH , VIH-1 , Quinolinas , Humanos , Saquinavir/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Isoquinolinas/farmacología , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico
15.
Rapid Commun Mass Spectrom ; 36(17): e9332, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35716385

RESUMEN

RATIONALE: The dried roots of Euphorbia kansui L., known as Kansui, are used to treat ascites and edema in traditional Chinese medicine. However, the toxicity of this herb has seriously restricted its clinical application. A unique vinegar-processing method has been used to reduce its toxicity since the time of ancient China. However, the detoxification mechanism underlying such vinegar processing has not been fully revealed. To find the answer, the process-induced changes in components should be carefully investigated. METHODS: We performed a systematic analysis of chemical components in raw and vinegar-processed Kansui using ultrahigh-performance liquid chromatography (UHPLC) diode array detection tandem mass spectrometry and UHPLC high-resolution mass spectrometry. Thirty-one chemical components in raw and vinegar-processed Kansui were found, the chemical structures of 28 components among them were proposed and the process-induced changes in components were then investigated. RESULTS: A comprehensive conclusion about the process-induced chemical change was drawn. It was found that jatrophane-type diterpenoids decreased markedly after vinegar processing, while ingenane-type diterpenoids were retained during vinegar processing. In silico drug target identification gave hints that jatrophane-type diterpenoids, which decreased markedly during vinegar processing, may have more intense toxicity involving cholinesterase and mitogen-activated protein kinases, while ingenane-type diterpenoids, which were retained during vinegar processing, may have a more intense therapeutic effect involving carbonic anhydrase. CONCLUSIONS: The possible detoxification mechanism of vinegar-processed Kansui is presented. The research has significance for the therapeutic/toxic chemical basis of Kansui. Also, it has significance for drug discovery from terpenoids within the herb.


Asunto(s)
Ácido Acético , Diterpenos , Medicamentos Herbarios Chinos , Euphorbia , Raíces de Plantas , Ácido Acético/química , Cromatografía Líquida de Alta Presión , Diterpenos/análisis , Diterpenos/química , Diterpenos/farmacología , Medicamentos Herbarios Chinos/química , Euphorbia/química , Fitoquímicos/análisis , Extractos Vegetales/toxicidad , Raíces de Plantas/efectos adversos , Raíces de Plantas/química , Espectrometría de Masas en Tándem/métodos
16.
Molecules ; 27(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432026

RESUMEN

(1) Background: Nuclear factor κB (NF-κB) is an important transcriptional regulator that regulates the inflammatory pathway and plays a key role in cellular inflammatory and immune responses. The presence of a high concentration of NF-κB is positively correlated with the severity of inflammation. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation; (2) Methods: we designed and synthesized 23 mollugin derivatives and evaluated their inhibitory activity against NF-κB transcription; (3) Results: Compound 6d exhibited the most promising inhibitory activity (IC50 = 3.81 µM) and did not show any significant cytotoxicity against the tested cell lines. Investigation of the mechanism of action indicated that 6d down-regulated NF-κB expression, possibly by suppressing TNF-α-induced expression of the p65 protein. Most of the compounds exhibited potent anti-inflammatory activity. Compound 4f was the most potent compound with 83.08% inhibition of inflammation after intraperitoneal administration, which was more potent than mollugin and the reference drugs (ibuprofen and mesalazine). ADMET prediction analysis indicated that compounds 6d and 4f had good pharmacokinetics and drug-like behavior; (4) Conclusions: Several series of mollugin derivatives were designed, synthesized, and evaluated for NF-κB inhibitory activity and toxicity. These results provide an initial basis for the development of 4f and 6d as potential anti-inflammatory agents.


Asunto(s)
FN-kappa B , Piranos , Humanos , Inflamación , Inyecciones Intraperitoneales
17.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235120

RESUMEN

The significant scaffold offered by atropisomeric amides with a C-N chiral axis has been extensively utilized for pharmaceuticals, agricultural science, and organic syntheses. As a result, the field of atropisomer synthesis has attracted considerable interest within chemistry communities. To date, a range of catalytic atroposelective approaches has been reported for the efficient construction of these challenging scaffolds. However, greatly concise and highly useful methodologies for the synthesis of these atropisomeric compounds, focusing on transition-metal, chiral amine, and phosphoric acid catalysis reactions, etc., are still desirable. Hence, it is indispensable to succinctly and systematically present all such reports by means of disclosing the mechanistic analysis and application, as well as the challenges and issues associated with the establishment of these atropisomers. In this review, we summarize the development of catalytic asymmetric synthetic strategies to access non-biaryl atropisomers rotating around a C-N chiral axis, including the reaction methods, mechanism, late-stage transformations, and applications.


Asunto(s)
Amidas , Aminas , Catálisis , Preparaciones Farmacéuticas , Estereoisomerismo
18.
Chemistry ; 27(20): 6183-6186, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33751688

RESUMEN

An efficient asymmetric Mannich/cyclization cascade strategy was established from 2-benzothiazolimines with N-acylpyrazoles to provide optical active benzothiazolopyrimidine derivatives using a copper-based complex. The mild cascade process constructed various structurally diverse products with broad scope of substrates together with excellent enantioselectivities (up to 99 % ee) and diastereoselectivities (up to 99:1 d.r.).

19.
Chemistry ; 27(13): 4302-4306, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33453077

RESUMEN

The catalytic enantioselective diorganozinc additions to cyclic diketones including pyrazolin-4,5-diones and isatins have been developed. In the presence of morpholine-containing chiral amino alcohol ligand, the corresponding chiral cyclic tertiary alcohols were produced in good to excellent yields (up to 97 %) and enantioselectivities (up to 95 % ee). The notable feature of this protocol includes its mild reaction conditions, Lewis acid additives free and broad functional group tolerance.

20.
Org Biomol Chem ; 19(3): 561-567, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33399606

RESUMEN

Developing powerful methods to introduce versatile functional groups at the N-substituents of isoquinolone scaffolds is still a great challenge. Herein, we report a novel three-component cascade annulation reaction to efficiently construct the N-oxopropyl chain of isoquinolone derivatives via rhodium(iii)-catalyzed C-H activation/cyclization/nucleophilic attack, with oxazoles used both as the directing group and potential functionalized reagents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA