Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(48): 22295-22301, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417793

RESUMEN

Hydrochromic materials characterized by noticeable color change upon water exposure have attracted pervasive attention for their frontier applications in sensing and information technologies. However, existing hydrochromic materials typically suffer from a slow hydrochromic response as well as limited stability and color tunability. This work describes a novel hydrochromic perovskite crystal composed of zero-dimensional Cs3TbF6:Eu3+, which displays switchable luminescence due to the constituent Tb3+ and Eu3+ ions. Mechanistic investigation reveals that the hydrochromic property stems from a water-induced phase transformation into a one-dimensional structure through a CsF-stripping process. The phase transformation triggers energy coupling between Tb3+ and Eu3+ ions in adjacent lanthanide halide polyhedra, resulting in an emission color change from green to orange. Notably, the phase transformation is ultrafast (20 ms) and reversible, and the emission color in each phase can be fine-tuned by controlling the Eu3+ doping concentration along with Y3+ co-doping. The advances in these hydrochromic luminescent materials offer exciting opportunities for information security and data storage.

2.
Mater Des ; 223: 111249, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36248181

RESUMEN

Multiplexed detection is essential in biomedical sciences since it is more efficient and accurate than single-analyte detection. For an accurate early diagnosis of COVID-19, a multiplexed detection strategy is required to avoid false negatives with the existing gold standard assay. Nb2CTx nanosheets were found to efficiently quench the fluorescence emission of lanthanide-doped upconversion luminescence nanoparticles at wavelengths ranging from visible to near-infrared spectrum. Using this broad-spectrum quencher, we developed a label-free FRET-based biosensor for rapid and accurate detection of SARS-CoV-2 RNA. To target ORF and N genes, two types of oligo-modified lanthanide-doped upconversion nanoparticles can be used simultaneously to identify-two sites in one assay via upconversion fluorescence enhancement intensity measurement with detection limits of 15 pM and 914 pM, respectively. Moreover, with multisite cross-validation, this multiplexed and sensitive biosensor is capable of simultaneous and multicolor analysis of two gene fragments of SARS-CoV-2 Omicron variant within minutes in a single homogeneous solution, which significantly improves the detection efficiency. The diagnosis result via our assay is consistent with the PCR result, demonstrating its application in the rapid and accurate screening of multiple genes of SARS-CoV-2 and other infectious diseases.

3.
Small ; 16(19): e2000708, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307877

RESUMEN

The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide-doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide-doped core@multishell nanoarchitecture allows the generation of multicolor dual-modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd-assisted lattices. It is experimentally proven that multiple visualized anti-counterfeit and information encryption with facile decryption and authentication using screen-printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.

4.
Nat Commun ; 15(1): 6797, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122769

RESUMEN

Multicolor tuning of persistent luminescence has been extensively studied by deliberately integrating various luminescent units, known as activators or chromophores, into certain host compounds. However, it remains a formidable challenge to fine-tune the persistent luminescence spectra either in organic materials, such as small molecules, polymers, metal-organic complexes and carbon dots, or in doped inorganic crystals. Herein, we present a strategy to delicately control the persistent luminescence wavelength by engineering sub-bandgap donor-acceptor states in a series of single-phase Ca(Sr)ZnOS crystals. The persistent luminescence emission peak can be quasi-linearly tuned across a broad wavelength range (500-630 nm) as a function of Sr/Ca ratio, achieving a precision down to ~5 nm. Theoretical calculations reveal that the persistent luminescence wavelength fine-tuning stems from constantly lowered donor levels accompanying the modified band structure by Sr alloying. Besides, our experimental results show that these crystals exhibit a high initial luminance of 5.36 cd m-2 at 5 sec after charging and a maximum persistent luminescence duration of 6 h. The superior, color-tunable persistent luminescence enables a rapid, programable patterning technique for high-throughput optical encryption.

5.
Adv Mater ; 35(21): e2205410, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36517207

RESUMEN

Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.

6.
ACS Appl Mater Interfaces ; 11(10): 10059-10067, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30789251

RESUMEN

Currently, metal halide perovskite nanocrystals have been extensively explored due to their unique optoelectronic properties and wide application prospects. In the present work, a facile grinding method is developed to prepare whole-family APbX3 (A = MA, FA, and Cs; X = Cl, Br, and I) perovskite nanocrystals. This strategy alleviates the harsh synthesis conditions of precursor dissolution, atmosphere protection, and high temperature. Impressively, the as-prepared perovskite nanocrystals are evidenced to have halogen-rich surfaces and yield visible full-spectral emissions with maximal photoluminescence quantum yield up to 92% and excellent stability. Additionally, the grinding method can be extended to synthesize widely concerned Mn2+-doped CsPbCl3 nanocrystals with dual-modal emissions of both excitons and dopants. As a proof-of-concept experiment, the present perovskite nanocrystals are demonstrated to be applicable as blue/green/red color converters in UV-excitable white-light-emitting diodes.

7.
Nanoscale ; 11(46): 22359-22368, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31728479

RESUMEN

Recently, lanthanide-doped luminescent materials have been widely studied and most investigations have been limited to rare-earth-containing fluorides formed with lighter alkali metals (Li, Na and K). Hence, it is important to understand the luminescence properties of cesium rare-earth fluorides. Herein, a novel type of multi-functional luminescent material, hexagonal ß-CsRe2F7 (Re = La-Lu, Y, Sc) nanocrystals, is successfully prepared via in situ crystallization inside glass. Specifically, Yb/Er:ß-CsLu2F7@glass exhibits a much higher upconversion quantum yield than Yb/Er:ß-NaYF4@glass (about 6 times), which is believed to be one of the most efficient upconversion materials so far. Impressively, Er:CsYb2F7@glass shows a significant photothermal effect, which can produce variable upconversion emission colors induced by an incident 980 nm laser diode, enabling it to find practical application in novel/high-precision anti-counterfeiting. In addition, Ce:CsLu2F7@glass with a maximal photoluminescence quantum yield reaching 67% can yield intense X-ray excitable radioluminescence, which is even higher than that of a commercial Bi4Ge3O12 scintillator. Benefitting from the effective protection of robust oxide glass, lanthanide-doped CsRe2F7 nanocrystals show long-term stability in harsh environments, retaining near 100% luminescence after directly immersing them in water/oil for 30 days. It is expected that the present nanocomposites have potential applications in the fields of high-end upconversion anti-counterfeiting and high-energy radiation detection.

8.
Nanoscale ; 11(32): 15010-15016, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31368470

RESUMEN

Mn-Doped CsPb(Cl/Br)3 quantum dots possess multi-functional optical, electronic and magnetic characteristics. However, they usually suffer from decomposition in air, and Mn2+ dopants will be gradually expelled from the perovskite host due to a radius mismatch between Pb2+ and Mn2+. To solve these crucial issues, the synthesis of glass stabilized Mn-doped quantum dots via an appropriate glass composition design and in situ glass crystallization is reported. Mn2+ dopants act as nucleating agents to promote the nucleation/growth of CsPb(Cl/Br)3 from B-P-Zn-Cs-Pb based oxyhalide glass and partition into the perovskite host to produce dual-color luminescence via efficient exciton-to-dopant energy transfer. Benefitting from the effective protection of robust glass, Mn-doped CsPb(Cl/Br)3 quantum dots exhibit superior water resistance and thermal stability. Particularly, almost 100% luminescence is retained after immersing the composite in water for 30 days. Interestingly, rapid thermal quenching for exciton recombination relative to Mn2+ d-d transition at cryogenic temperatures enables its promising applications as a ratiometric temperature sensing medium.

9.
ACS Appl Mater Interfaces ; 11(33): 30053-30064, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31364351

RESUMEN

In situ glass crystallization is an effective strategy to integrate lanthanide-doped upconversion nanocrystals into amorphous glass, leading to new hybrid materials and offering an unexploited way to study light-particle interactions. However, the precipitation of Sc3+-based nanocrystals from glass is rarely reported and the incorporation of lanthanide activators into the Sc3+-based crystalline lattice is formidably difficult owing to their large radius mismatch. Herein, it is demonstrated that lanthanide dopants with smaller ionic radii can act as nucleating agents to promote the nucleation/growth of KSc2F7 nanocrystals in oxyfluoride aluminosilicate glass. A series of structural and spectroscopic characterizations indicate that Ln-dopant-induced K/Sc/Ln/F amorphous phase separation from glass is an essential prerequisite for the precipitation of KSc2F7 and the partition of Ln dopants into the KSc2F7 lattice by substituting Sc3+ ions. Importantly, modifying the Ln-to-Sc ratio in glass enables to control competitive crystallization of KSc2F7 and Ln-based (KYb2F7, KLu2F7, and KYF4) nanocrystals and produce dual-phase fluoride-embedded nanocomposites with distinct crystal fields. Consequently, tunable multicolor upconversion luminescence can be achieved through diversified regulatory approaches, such as adjustment of the dual-phase ratio, selective separation of Ln3+ dopants, and alteration of incident pumping laser. As a proof-of-concept experiment, the application of dual-phase glass as a color converter in 980 nm laser-driven upconverting lighting is demonstrated.

10.
Nanoscale ; 11(37): 17216-17221, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31531444

RESUMEN

In the last few years, all-inorganic cesium lead halide (CsPbX3) quantum dots have shown unprecedented radical progress for practical applications in the optoelectronic field, but they quickly decompose when exposed to air. The in situ growth of the CsPbX3 particles inside amorphous glass can significantly improve their stability. Unfortunately, it is formidably difficult to precipitate whole-family CsPbX3 from a glass matrix and their photoluminescence quantum yields require further improvement. Herein, fluoride additives were introduced into oxyhalide borosilicate glasses to break the tight glass network, which promoted the nucleation/growth of CsPbX3 (X = Cl, Cl/Br, Br, Br/I and I) inside the glass. Importantly, the quantum efficiencies of glass-stabilized CsPbBr3, CsPb(Br/I)3 and CsPbI3 reached 80%, 60% and 50%, respectively, which are the highest efficiencies reported so far. Benefiting from the effective protection of robust glass, CsPbX3 quantum dots exhibited superior water resistance with more than 90% luminescence remaining after immersing them in water for 30 days, and halogen anion exchange among different CsPbX3 materials was completely inhibited. Two prototype light-emitting diodes were constructed by coupling green/red and green/orange/red quantum dots with InGaN blue chips, yielding bright white light with optimal luminous efficiency of 93 lm W-1, tunable color temperature of 2000-5800 K and high color rendering index of 90.

11.
Nanoscale ; 11(26): 12465-12470, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31219129

RESUMEN

Effective Mn2+ doping in a CsPbCl3 lattice utilizing manganese acetate and trimethylchlorosilane is achieved via a one-pot hot-injection synthesis method. This strongly contrasts to the previous case, where only the MnCl2 precursor was suitable for Mn2+ doping by considering the matching of bond dissociation energies between Mn-Cl and Pb-Cl. The Mn doping concentration and luminescence quantum yield are highly dependent on trimethylchlorosilane content. A new doping mechanism is proposed, where the incorporation of Mn2+ into CsPbCl3 is achieved via directly inserting [MnCl6]4- octahedra into the perovskite structure during the nucleation/growth processes instead of Mn-to-Pb cation exchange. Accordingly, increasing Cl- content in the reaction solution indeed promotes the doping of other divalent transition metal ions such as Ni2+, Cu2+ and Zn2+ in CsPbCl3 and improve the quantum yield of CsPbCl3 nanocrystals up to ∼20% compared to the undoped counterparts (∼1%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA