Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sheng Li Xue Bao ; 74(6): 949-958, 2022 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-36594383

RESUMEN

Tanshinone IIa is a key ingredient extracted from the traditional Chinese medicine Salvia miltiorrhiza (Danshen), and is widely used to treat various cardiovascular diseases. Vascular calcification is a common pathological change of cardiovascular tissues in patients with chronic kidney disease, diabetes, hypertension and atherosclerosis. However, whether Tanshinone IIa inhibits vascular calcification and the underlying mechanisms remain largely unknown. This study aims to investigate whether Tanshinone IIa can inhibit vascular calcification using high phosphate-induced vascular smooth muscle cell and aortic ring calcification model, and high dose vitamin D3 (vD3)-induced mouse models of vascular calcification. Alizarin red staining and calcium quantitative assay showed that Tanshinone IIa significantly inhibited high phosphate-induced vascular smooth muscle cell and aortic ring calcification. qPCR and Western blot showed that Tanshinone IIa attenuated the osteogenic transition of vascular smooth muscle cells. In addition, Tanshinone IIa also significantly inhibited high dose vD3-induced mouse aortic calcification and aortic osteogenic transition. Mechanistically, Tanshinone IIa inhibited the activation of NF-κB and ß-catenin signaling in normal vascular smooth muscle cells. Similar to Tanshinone IIa, inhibition of NF-κB and ß-catenin signaling using the chemical inhibitors SC75741 and LF3 attenuated high phosphate-induced vascular smooth muscle cell calcification. These results suggest that Tanshinone IIa attenuates vascular calcification at least in part through inhibition of NF-κB and ß-catenin signaling, and Tanshinone IIa may be a potential drug for the treatment of vascular calcification.


Asunto(s)
FN-kappa B , Calcificación Vascular , Animales , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Transducción de Señal , Miocitos del Músculo Liso/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/metabolismo , Fosfatos/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036484

RESUMEN

The phenotypic switch of vascular smooth muscle cells (VSMCs) plays a pivotal role in the development of vascular disorders, such as atherosclerosis, stenosis and restenosis, after vascular intervention. In our previous study, n-butylidenephthalide (BP) was reported to have anti-proliferating and apoptotic effects on VSMCs. The purpose of the current study is to further investigate its role in platelet-derived growth factor (PDGF)-induced VSMC phenotypic modulation in an arteriovenous fistula model. In vitro, we observed that BP inhibited the PDGF-induced cytoskeleton reorganization of the VSMCs. The enhanced expression of vimentin and collagen, as well as the migration ability induced by PDGF, were also inhibited by BP. By cell cycle analysis, we found that BP inhibited the PDGF-induced VSMCs proliferation and arrested the VSMCs in the G0/G1 phase. In an arteriovenous fistula rat model, the formation of stenosis, which was coupled with a thrombus, and the expression of vimentin and collagen in VSMCs, were also inhibited by administration of BP, indicating that BP inhibited the PDGF-induced phenotypic switch and the migration of VSMCs. Besides, the inhibitory effects of BP on the phenotypic switch were found to accompany the activated 5' AMP-activated protein kinase (AMPK) as well as the inhibited phosphorylation of mTOR. Knockdown of AMPK by gene silencing conflicted the effects of BP and further exacerbated the PDGF-induced VSMCs phenotypic switch, confirming the modulating effect that BP exerted on the VSMCs by this pathway. These findings suggest that BP may contribute to the vasculoprotective potential in vasculature.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Plasticidad de la Célula/efectos de los fármacos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fenotipo , Anhídridos Ftálicos/farmacología , Animales , Fístula Arteriovenosa/etiología , Fístula Arteriovenosa/metabolismo , Fístula Arteriovenosa/patología , Biomarcadores , Movimiento Celular/efectos de los fármacos , Constricción Patológica/etiología , Constricción Patológica/metabolismo , Constricción Patológica/prevención & control , Técnica del Anticuerpo Fluorescente , Hiperplasia , Inmunofenotipificación , Neointima/metabolismo , Ratas , Serina-Treonina Quinasas TOR/metabolismo
3.
Huan Jing Ke Xue ; 40(12): 5629-5639, 2019 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-31854636

RESUMEN

This study analyzed heavy metal concentrations in mining/agricultural soil and plant samples from the Dabaoshan mining-impacted region, Guangdong Province, and evaluated the corresponding health risks. The results showed that most of the soil samples exhibited a pH<5, which, in some cases, facilitated the release of Cu, Pb, and Al from soil and hence affected the availability for plant uptake. Farmland in Shaxi town was found to be seriously polluted by Cd, whereas the mining area was seriously polluted by Cd, Pb, Cu, and As, which present potential ecological risks. Farmland in Xinjiang town was seriously polluted by Cu, As, and Cd, and also present ecological risks for this area. The concentrations of heavy metals (especially Al and Fe) in the eight plant species assessed were mostly higher than that in plants grown in non-contaminated soil. Only 10% of the bioconcentration factors and 18% of the translocation factors were higher than 1 in the aerial parts of plants, indicating that most heavy metals were concentrated in plant roots. Heavy metal concentrations in shoots of Miscanthus and Blechnum orientale were not high, and their accumulation from soil to plant was poor. These plants are excluder species and can be used for in situ phyto-stabilization and management. Weeds like Soliva anthemifolia species in contaminated agricultural field showed a strong enrichment ability for Cd. Rice mainly accumulated As and Cd in the roots and belongs to root compartment plants.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Medición de Riesgo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA