Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 159(1): 200-214, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259927

RESUMEN

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Asunto(s)
Enfermedad/genética , Drosophila melanogaster/genética , Pruebas Genéticas , Patrón de Herencia , Interferencia de ARN , Animales , Modelos Animales de Enfermedad , Humanos , Cromosoma X
2.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066803

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Fármacos Neuroprotectores , Vincristina , Vincristina/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Fármacos Neuroprotectores/farmacología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Células Cultivadas , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico
3.
PLoS Genet ; 12(5): e1006054, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27195754

RESUMEN

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.


Asunto(s)
Proteínas de Drosophila/genética , Ojo/metabolismo , Cinesinas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Proteínas Hedgehog/genética , Cinesinas/metabolismo , Ratones , Células Fotorreceptoras/metabolismo , Poliubiquitina , Proteolisis , ARN Interferente Pequeño , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Pez Cebra/genética
4.
PLoS Biol ; 12(1): e1001777, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24492843

RESUMEN

Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α-like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.


Asunto(s)
Dimetilaliltranstransferasa/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Receptores Notch/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab1/genética , Animales , Dimetilaliltranstransferasa/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Prenilación de Proteína , Subunidades de Proteína/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab1/metabolismo
5.
Res Sq ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39011110

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.

6.
Brain Commun ; 6(3): fcae202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911266

RESUMEN

While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.

7.
J Neurosci ; 32(45): 16018-30, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136438

RESUMEN

Trans-synaptic adhesion between Neurexins (Nrxs) and Neuroligins (Nlgs) is thought to be required for proper synapse organization and modulation, and mutations in several human Nlgs have shown association with autism spectrum disorders. Here we report the generation and phenotypic characterization of Drosophila neuroligin 2 (dnlg2) mutants. Loss of dnlg2 results in reduced bouton numbers, aberrant presynaptic and postsynaptic development at neuromuscular junctions (NMJs), and impaired synaptic transmission. In dnlg2 mutants, the evoked responses are decreased in amplitude, whereas the total active zone (AZ) numbers at the NMJ are comparable to wild type, suggesting a decrease in the release probability. Ultrastructurally, the presynaptic AZ number per bouton area and the postsynaptic density area are both increased in dnlg2 mutants, whereas the subsynaptic reticulum is reduced in volume. We show that both presynaptic and postsynaptic expression of Dnlg2 is required to restore synaptic growth and function in dnlg2 mutants. Postsynaptic expression of Dnlg2 in dnlg2 mutants and wild type leads to reduced bouton growth whereas presynaptic and postsynaptic overexpression in wild-type animals results in synaptic overgrowth. Since Nlgs have been shown to bind to Nrxs, we created double mutants. These mutants are viable and display phenotypes that closely resemble those of dnlg2 and dnrx single mutants. Our results provide compelling evidence that Dnlg2 functions both presynaptically and postsynaptically together with Neurexin to determine the proper number of boutons as well as the number of AZs and size of synaptic densities during the development of NMJs.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Densidad Postsináptica/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/genética , Unión Neuromuscular/ultraestructura , Densidad Postsináptica/genética , Densidad Postsináptica/ultraestructura , Terminales Presinápticos/ultraestructura
8.
Cell Rep ; 35(10): 109224, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107252

RESUMEN

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Diferenciación Celular , Humanos , Fenotipo
9.
Nat Neurosci ; 22(2): 167-179, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643292

RESUMEN

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Axones/metabolismo , Línea Celular , Regulación hacia Abajo , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Médula Espinal/metabolismo , Estatmina
10.
Cell Metab ; 28(4): 605-618.e6, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-29909971

RESUMEN

Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.


Asunto(s)
Ceramidas/metabolismo , Proteínas de Drosophila/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Drosophila/genética , Proteínas de Drosophila/química , Retroalimentación Fisiológica , Femenino , Fosfolipasas A2 Grupo VI/genética , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Fluidez de la Membrana , Mutación , Neuronas/metabolismo , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Esfingolípidos/metabolismo
11.
Dis Model Mech ; 9(3): 235-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26935102

RESUMEN

Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes.


Asunto(s)
Enfermedad , Drosophila melanogaster/fisiología , Animales , Bioensayo , Humanos , Especificidad de Órganos
12.
Elife ; 52016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901468

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN, causes a ROS independent neurodegeneration in flies (Chen et al., 2016). In fh mutants, iron accumulation in the nervous system enhances the synthesis of sphingolipids, which in turn activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2) to trigger neurodegeneration of adult photoreceptors. Here, we show that loss of Fxn in the nervous system in mice also activates an iron/sphingolipid/PDK1/Mef2 pathway, indicating that the mechanism is evolutionarily conserved. Furthermore, sphingolipid levels and PDK1 activity are also increased in hearts of FRDA patients, suggesting that a similar pathway is affected in FRDA.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Factores de Transcripción MEF2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Animales , Ataxia de Friedreich/patología , Técnicas de Inactivación de Genes , Humanos , Proteínas de Unión a Hierro/genética , Ratones , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Frataxina
13.
Elife ; 52016 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-27343351

RESUMEN

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas de Drosophila/metabolismo , Ataxia de Friedreich/fisiopatología , Proteínas de Unión a Hierro/genética , Hierro/toxicidad , Factores Reguladores Miogénicos/metabolismo , Esfingolípidos/biosíntesis , Animales , Modelos Animales de Enfermedad , Drosophila , Frataxina
14.
Elife ; 42015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25824290

RESUMEN

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biblioteca de Genes , Mutagénesis Insercional , Interferencia de ARN , Animales , Animales Modificados Genéticamente , Western Blotting , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva/genética , Larva/metabolismo , Aprendizaje/fisiología , Microscopía Confocal , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
15.
Elife ; 32014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25313867

RESUMEN

Mitochondrial fusion and fission affect the distribution and quality control of mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion of mitochondria in neuromuscular junctions (NMJs). Marf mutants also fail to maintain proper synaptic transmission at NMJs upon repetitive stimulation, similar to Drp1 fission mutants. However, unlike Drp1, loss of Marf leads to NMJ morphology defects and extended larval lifespan. Marf is required to form contacts between the endoplasmic reticulum and/or lipid droplets (LDs) and for proper storage of cholesterol and ecdysone synthesis in ring glands. Interestingly, human Mitofusin-2 rescues the loss of LD but both Mitofusin-1 and Mitofusin-2 are required for steroid-hormone synthesis. Our data show that Marf and Mitofusins share an evolutionarily conserved role in mitochondrial transport, cholesterol ester storage and steroid-hormone synthesis.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/biosíntesis , Proteínas de la Membrana/genética , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Colesterol/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Gotas Lipídicas/metabolismo , Longevidad/genética , Proteínas de la Membrana/deficiencia , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Sinapsis/genética , Transmisión Sináptica , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
16.
Neuron ; 84(4): 764-77, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25451193

RESUMEN

Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].


Asunto(s)
Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Canales Catiónicos TRPV/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplásmico/metabolismo , Canales Iónicos/genética , Vesículas Sinápticas/metabolismo , Canales Catiónicos TRPV/genética
17.
FEBS Lett ; 585(21): 3409-14, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22001206

RESUMEN

The dipeptidyl peptidase (DPP) family members, including DPP-IV, DPP8, DPP9 and others, cleave the peptide bond after the penultimate proline residue and are drug target rich. The dimerization of DPP-IV is required for its activity. A propeller loop located at the dimer interface is highly conserved within the family. Here we carried out site-directed mutagenesis on the loop of DPPIV and identified several residues important for dimer formation and enzymatic activity. Interestingly, the corresponding residues on DPP9 have a different impact whereby the mutations decrease activity without changing dimerization. Thus the propeller loop seems to play a varying role in different DPPs.


Asunto(s)
Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Estructura Cuaternaria de Proteína , Secuencia de Aminoácidos , Dipeptidil Peptidasa 4/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA