Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Phys Rev Lett ; 132(15): 153801, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38683010

RESUMEN

In this Letter, we explore the intersection of chirality and recently discovered toroidal spatiotemporal optical vortices (STOVs). We introduce "photonic conchs" theoretically as a new type of toroidal-like state exhibiting geometrical chirality, and experimentally observe these wave packets with controllable topological charges. Unlike toroidal STOVs, photonic conchs exhibit unique chirality-related dynamical evolution in free space and possess an orbital angular momentum correlated with all the dimensions of space-time. This research deepens our understanding of toroidal light states and potentially advances various fields by unveiling similar wave phenomena in a broader scope of physics systems, including acoustics and electronics.

2.
Opt Express ; 31(19): 30435-30445, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710584

RESUMEN

The liquid crystal (LC) geometrical phase optics, which is realized by the high-resolution control of the optical axis orientation in transparent micrometer-thin polymer films, is emerging as a next generation of planar optics. It features pronounced optical properties and stimuli-responsive behaviors, which could introduce appealing and new possibilities for photonic purposes. The development of fabrication techniques producing elements with large aperture sizes and arbitrarily varying molecular orientation is of significance in terms of practical utility. Here, we propose the pulsed polarization patterning technique to create large-aperture and defect-free LC geometrical phase elements. We investigated the capability of the azo photo-alignment material responding to nanosecond laser pulses and the corresponding anchoring behaviors to LCs. The threshold was reduced to one fourth of that under the continuous wave recording. The patterning resolution was found to be enhanced to around 0.71 µm, due to the ultra-fast interaction nature of the photo-alignment material with the polarized light field. We proposed the flying exposure mode to deliver high frequency modulated polarized laser pulses (8 kHz), with the precision stage moving in a uniform velocity for light-field stitching and the servo auto-focusing in the sample normal, enabling the stable and reliable polarization patterning for large aperture sizes. We further report on representative fabrication of LC polarization gratings with an aperture of 4 inch and 99.2% average diffraction efficiency.

3.
Opt Express ; 30(13): 23725-23733, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225047

RESUMEN

Metasurface-based color filters show great potential in imaging devices and color printing. However, it is still a great challenge to meet the high demand for large-area flexible displays with structural color filters. Here, a reflective color filter is developed with a sandwiched metasurface, where the photoresist grating, complementary silver grating and silicon nitride grating are sequentially stacked on the substrate. Analytical results show that bandpass reflective spectra can be achieved due to the combined influence of guided mode resonance and cavity resonance, and full-spectrum colors including three primary colors can be generated by merely varying the period of the metasurface. With only photolithography and deposition technology involved, large-area samples incorporating pixelated metasurfaces are easily fabricated. Metasurfaces with three periods of 540 nm, 400 nm and 320 nm are experimentally obtained having peak reflective efficiency of ∼ 60%, demonstrating red, green and blue colors as theoretical results. A stripe sample with the structural period varying from 250 nm to 550 nm is fabricated in an area of 10 mm × 30 mm, displaying full-color reflections as simulated. Finally, with metasurfaces of three structural periods, the pixelated Soochow University logo is fabricated in a larger area of ∼ 30 mm × 30 mm. Therefore, the proposed structure shows high compatible to roll-to-roll nano-imprinting for large-area flexible displays, with the photoresist film can be easily substituted by UV film in addition.

4.
Opt Express ; 30(2): 3101-3112, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209436

RESUMEN

The microlens array (MLA) with a small geometric footprint and unique performances, is the key enabler to push the development of photonic devices toward miniaturization, multi-function and large-scale integration. However, the realization of 100% fill-factor (FF) MLAs with high controllability and its mass manufacturing without complex steps has always been a difficult issue. Here, we propose an efficient, highly flexible and low-cost manufacturing approach for MLAs with a high FF via snapshot polarization patterning. The digitalized linear polarization pattern was distributed across the photo-alignment layer with both high efficiency and accuracy, enabling large-area liquid crystal MLA with parameter controllability from element to element. The MLA manufacturing process does not involve developing, etching and deposition steps and is suitable for industry up-scaling. We further proposed a novel compact compound-eye imaging system for biometrics with the obtained MLAs. The 100% FF MLA enables high light utilization efficiency and low background crosstalk, yielding compact biometrics indentation with high recognition accuracy. The realization of such planar optics would lead to a plethora of different miniaturized multiaperture imaging systems in the future.

5.
Opt Express ; 30(25): 44864-44877, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522900

RESUMEN

To compensate for the inability for polarization imaging by conventional methods, metasurface optics with compactness and multi-function emerge as an approach to provide images with different linear and circular polarizations. Here, we propose a liquid crystal (LC) geometric phase-based chiral imaging lens (CIL) that simultaneously forms images of objects with opposite helicity. The CIL (Diameter 2.3 cm) was optimized by a spatial multiplexing algorithm and realized using the digital holography technique, where the LC domains were regulated by pixelated nanogratings with varied orientation. We investigated the potential of the patterning technique toward high order LC alignment by balancing the periodicity and depth of the nanogratings. The CIL exhibited a wide field of view of ±20°, which is attributed to the self- assembling effects of LC molecules. The compactness, lightness, and ability to produce chiral images of the LC CIL even at large angles have significant potential for practical polarization imaging.

6.
Opt Express ; 30(10): 15929-15938, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221447

RESUMEN

Augmented reality (AR) three-dimensional (3D) display is the hardware entrance of metaverse and attracts great interest. The fusion of physical world with 3D virtual images is non-trivial. In this paper, we proposed an AR 3D display based on a pixelated volume holographic optical element (P-VHOE). The see-through combiner is prepared by spatial multiplexing. A prototype of AR 3D display with high diffraction efficiency (78.59%), high transmission (>80%) and non-repeating views is realized. Virtual 3D objects with high fidelity in depth is reconstructed by P-VHOE, with a complex wavelet structural similarity (CW-SSIM) value of 0.9882. The proposed prototype provides an efficient solution for a compact glasses-free AR 3D display. Potential applications include window display, exhibition, education, teleconference.

7.
Opt Express ; 30(8): 13391-13403, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472952

RESUMEN

Scalable and low-cost manufacturing of broadband absorbers for use in the long-wave infrared region are of enormous importance in various applications, such as infrared thermal imaging, radiative cooling, thermal photovoltaics and infrared sensor. In recent years, a plethora of broadband absorption metasurfaces made of metal nano-resonators with plasmon resonance have been synthesized. Still, their disadvantages in terms of complex structure, production equipment, and fabrication throughput, limit their future commercial applications. Here, we propose and experimentally demonstrate a broadband large-area all-dielectric metasurface absorber comprised of silicon (Si) arrys of square resonators and a silicon nitride (Si3N4) film in the long-wave infrared region. The multiple Mie resonance modes generated in a single-size Si resonator are utilized to enhance the absorption of the Si3N4 film to achieve broadband absorption. At the same time, the transversal optical (TO) phonon resonance of Si3N4 and the Si resonator's magnetic dipole resonance are coupled to achieve a resonator size-insensitive absorption peak. The metasurface absorber prepared by using maskless laser direct writing technology displays an average absorption of 90.36% and a peak absorption of 97.55% in the infrared region of 8 to 14 µm, and still maintains an average absorption of 88.27% at a inciedent angle of 40°. The experimentally prepared 2 cm × 3 cm patterned metasurface absorber by markless laser direct writing lithography (MLDWL) exhibits spatially selective absorption and the thermal imaging of the sample shows that the maximum temperature difference of 17.3 °C can exist at the boundary.

8.
Opt Express ; 29(14): 21833-21843, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265962

RESUMEN

In this paper, we propose a roll-to-plate (R2P) projection micro-stereolithography (PSL) 3D printer, where layers of photopolymer are transferred and photopolymerized through a flexible membrane. Benefitting from the "coat-expose-peel" procedure, highly viscous material can be printed quickly with good vertical resolution. Most importantly, the multinozzle dispensing method enables the fabrication of multimaterial architectures with high throughput, low material consumption, and low cross-contamination. R2P-PSL exhibits superior features for flexible 3D printing in terms of material complexity. For this purpose, we envision infinite scenarios involving potential applications in bionics, biotechnology, microcircuit graphics, photonic devices, microfluidics and material science.

9.
Opt Express ; 29(12): 18760-18768, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154125

RESUMEN

We fabricated the freestanding "core-shell" AgNWs/ Ni mesh electrodes by employing AgNWs solution onto the freestanding Ni-mesh. The combination of AgNWs and Ni mesh resulted in higher electrical conductivity, thereby enhancing the electromagnetic interference (EMI) shielding effectiveness (SE). The hybrid freestanding electrode created highly effective transparent and flexible EMI shielding films, featuring an ultrathin thickness (3 µm), the high optical transparency of 93% at 550 nm, and a SE of 41.5 dB in the X-band, which exceeds that of 30 dB for a freestanding Ni-mesh (94%). We showed that the hybrid freestanding AgNWs/Ni-mesh film is a promising high-performance transparent and flexible EMI shielding material that satisfies the requirements for optoelectronic devices.

10.
Opt Express ; 29(16): 25254-25269, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614859

RESUMEN

It has been a great challenge to design an extremely flexible and stretchable electrochromic device (ECD), due to the physical deformation and fracture of the conductive materials and supporting substrates after plenty of bending. To solve the aforementioned shortcoming of ECDs, in this paper, a self-supporting metal Ni gird electrode is mentioned, which discarded solid or flexible polymeric substrates, having outstanding features of extremely foldability (bending radius lower 50 µm), stretchability (stretching to 117.6%), excellent conductivity (sheet resistance lower 0.4 Ω/sq), high transmittance (about 90% in full spectra), and ultra-thin thickness (3.7 µm). By assembling the metal electrode, the electrochromic material and the hydrogel, a paper-thin, ultra-flexible, and stretchable ECD with an overall thickness of 113 µm was prepared, which could be attached to the manifold and undulating surface of things and be stretched without compromising the dynamic bleaching and coloration performance. The triple-layered and substrate-free ECD with excellent flexibility and wearability could serve as futuristic electronics used for multiple purposes, like flexible displays, camouflage wearables and medical monitoring, etc.

11.
Small ; 16(48): e2005639, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33169499

RESUMEN

The disordered dendritic growth of Li metal seriously hampers the practical application of lithium metal batteries. Great efforts are devoted to suppress the growth of dendrites, it is still necessary to explore measures of controlling dendritic growth and pave ways for normal cell operation in presence of dendrites. Herein, a modification technique of Li metal anode by a periodic Ni mesh with micrometer-sized grid is proposed for interfacial engineering. Periodic patterned Ni mesh is prepared using a novel laser direct-writing technique combined with selective electrodeposition process. The growth of Li dendrites is regulated under the effect of unique electric field distribution by the introduction of the Ni mesh. It is noteworthy that the controlled lateral growth of dendrites is successfully realized by the internal structure modification instead of any external electric or magnetic field as has been previously reported. The resultant anode exhibits a stable cycling performance with ultralow overpotential of 6-8 mV for over 1000 h at the current density of 0.5 mA cm-2 . It also presents superior electrochemical performance when assembled against LiFePO4 cathode into full cells, with an initial capacity of 133 mA h g-1 and a stable cycling performance over 160 cycles.

12.
Opt Express ; 28(18): 26531-26542, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32906925

RESUMEN

An efficient approach to obtain high shielding effectiveness (SE) in transparent shielding in an optical window field is proposed and demonstrated by fabricating an embedded double-layer metallic mesh (DLMM) comprised of randomly structured Ni meshes on both sides of a flexible substrate, employing a facile and low-cost double-sided nanoimprinting method. The unique nonperiodic random structure contributes to uniform diffraction and eliminates the Moiré fringe generated by double-layer periodic meshes, ensuring high imaging quality for optical applications. The designed DLMM films simultaneously achieve strong shielding in the X-band and high transmittance in the visible spectrum, demonstrating a high transmittance of 88.7% at the 550-nm wavelength and a SE of 46.9 dB at a frequency of 8.2 GHz. An ultra-high SE of 80 dB is achieved at 64.2% transmittance, which reveals the highest reported SE over a metallic mesh for transparent shielding, indicating the high potential for this transparent electromagnetic interference shielding material for practical optical applications.

13.
Opt Express ; 28(25): 38355-38365, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379649

RESUMEN

All-dielectric meta-surfaces composed of dielectric meta-atoms with electric and magnetic multipole resonances provide a low loss alternative to plasmonic meta-surfaces in some optical research fields such as meta-lens and meta-surface holography. We utilize the digital holography lithography technique to obtain the large area meta-surface perfect reflector made of high refractive index and low loss silicon discs arrays, with the capability to delicately control the optical response in the near infrared spectrum. Three types of meta-surface reflectors (discs, truncated cones and diamond-shaped discs) were fabricated, which correspondingly exhibited nearly 1 peak reflectance and greater than 97% average reflectance in their respective perfect reflectance spectral regions. Digital holography lithography only takes 4 min to fabricate millions of photoresist disks over an area of 100 mm2, which is high processing efficiency and low cost. The fabrication strategy opens a new avenue for the production of large-area meta-surfaces in the optical field, especially in the mass production of optical communication devices, semiconductor lasers, etc.

14.
Nanotechnology ; 31(41): 415302, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-32299071

RESUMEN

Black structural color has attracted particular interest due to its attractive applications in various fields. Until now, however, the reported graphical black structural color (GBSC) devices are mainly realized by means of electron beam lithography or focused ion beam technology, inevitably suffering from the obstacles of high production cost and time-consuming processing. Moreover, the limited and small area of the GBSC constitutes another issue for real applications and little attention has been devoted to flexible GBSC because of the limitations of this manufacturing approach. In this paper, we experimentally demonstrate and theoretically analyze a novel flexible GBSC architecture capitalized on a pixelated embedded nickel cylindrical array using a reliable, low-cost and self-developed continuously variable spatial frequency lithography. The fabricated graphical and large-area flexible GBSC sample (4 cm × 4 cm) exhibits a measured absorbance of ∼92% over the entire visible regime from 400 nm to 700 nm. Furthermore, the desirable absorptivity is well retained at incident angles up to 60°. It is anticipated that the facile, controllable and scalable approach developed here opens new exciting perspectives for industrial production.

15.
Opt Express ; 27(17): 24194-24206, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510313

RESUMEN

A unique freestanding nickel (Ni) metallic mesh-based electromagnetic interference shielding film has been fabricated though the direct-writing technique and a subsequent selective metal electrodeposited process. The structured freestanding Ni mesh film demonstrates a series of advantages, including ultrathin thickness (2.5-6.0 µm) and ultralight weight (0.23 mg cm-2), extraordinary optoelectronic performance (sheet resistance about 0.24-0.7 Ω sq-1 with transparency of 92%-93%), high figure of merit (18000) and outstanding flexibility as it can withstand folding, rolling and crumpling into various shapes while keeping the conductivity constant. Furthermore, by using this high-performance Ni mesh, an ultrathin, lightweight, freestanding and transparent electromagnetic interference shielding (EMI) film with extraordinary optoelectronic properties (shielding effectiveness about 40 dB with transparency of 92%) is demonstrated in X-band, with no performance attenuation observed even in bending state. This freestanding metallic mesh-structured electrode can be further explored or applied in various potential applications, such as conformal microwave antennas, transparent EMI windows, and wearable electronics.

16.
Opt Express ; 27(7): 9570-9577, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045106

RESUMEN

This study develops a large-area pixelated filter that can achieve colors covering the entire visible range with a fixed period under normal incidence. Vivid colors as blue, green, and yellow (peak efficiency of ~60%) are experimentally achieved based on a Fano-resonance by altering the overlay's refractive index, which is highly sensitive to the surrounding material. Furthermore, the feasibility of using this device in large-area color printing and index sensors is discussed in detail, wherein a large-area (3 cm × 3 cm) logo and a figure of merit of 254 are achieved. Therefore, this developed structure can be regarded as an alternative to traditional periodic-dependent structure colors, which can also be performed as index sensors with high sensitivity.

17.
Opt Express ; 27(5): 7513-7522, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876314

RESUMEN

A compound-eye imaging system based on the phase diffractive microlens array as a compact observation module is proposed. As compared with the refractive microlens in common compound-eye imaging systems, the diffractive microlens is a flat imaging optics featuring high relative aperture, thin component thickness and compatibility with lithography techniques. As an application, a compact fingerprint imaging module was demonstrated using this compound-eye imaging system. The phase Fresnel microlens array with continuous trough morphology was fabricated via the self-developed gray-scale laser direct write equipment. An image reconstruction method is proposed by extracting the effective image information of each Fresnel microlens, removing the complex signal separator layer from the compound-eye imaging system. The illumination optics is further planarized through the waveguide backlighting and the waveguide functions as the touch panel for fingerprint recording. The novel compound-eye imaging device length was only restricted by the focal length of the microlens with a low limit of 4.12f. The applicability of this novel compound-eye imaging system was further demonstrated by recording the human fingerprint texture, paving ways for various applications as a compact imaging system.

18.
Opt Express ; 27(21): 29547-29557, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684214

RESUMEN

Flexible electronics, as a futuristic technology, is presenting tremendous impact in areas of wearable displaying, energy saving, and adaptive camouflage. In this work, we constructed a simple triple-layered electrochemical device with high flexibility using the electroplated nickel (Ni) grid electrode and the multifunctional hydrogel. The Ni grid electrode with low resistance (0.5 Ω/sq), high optical transparency (84.8%) and good mechanical flexibility, is beneficial for efficient electron injection, while the transparent lithium chloride hydrogel functions simultaneously for ion storage, ion transportation and counter-conducting. The thin polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) film is utilized as the electrochromic (EC) material and it also distributes the electrons evenly for uniform coloration. The triple-layered EC architecture not only simplifies the manufacturing procedures but also improves the device performance in terms of optical contrast and mechanical robustness. The device shows fast response for coloration and bleaching with an absolute transmittance contrast of 40% and a contrast retention over 72% after 2500 bending cycles. The ability of the flexible electrochromic device for conformable attaching was also investigated without obvious performance degradation. The electroplated Ni grid electrode and the multifunctional hydrogel are advantageous in constructing flexible electrochromic devices in terms of the response time, the working stability and the bending capability, paving a way for next-generation flexible electronics.

19.
Opt Express ; 27(7): 10022-10033, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045149

RESUMEN

We propose and demonstrate the versatile fabrication of optical subwavelength microcavities by using imaging holography. As a demonstration, a peculiar square optical microcavity with a periodicity of 400 nm is imaged from a micrometer-scale diffractive optical element, attributing to the interference by the refocusing of the multiple diffractive beams. By spin-coating an active conjugated polymer onto the microcavity, highly directional laser emission with a low pumping threshold of 0.5 kW/cm2 is achieved. The effect of the film thickness on the lasing performance is also investigated. This imaging holography technique can enable convenient and easy fabrication of optical microcavities with subwavelength features, hence providing significant flexibility and richness on engineering the optical response of photonic nanostructures.

20.
Opt Express ; 26(17): 21479-21489, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130854

RESUMEN

We present an omnidirectional broadband metasurface absorber whose dielectric-metal-dielectric layers are modulated by cylinder arrays. The simultaneous excitation of surface plasmon resonance and localized surface plasmon resonance affords an average optical absorption of 0.97 (0.9, experiment), with peak absorption up to 0.99 (0.984, experiment), for the wavelength range of 400-1100 nm, and absorption >0.93 (0.87, experiment) for incident angles up to 60°. The device, which is fabricated by continuously variable spatial frequency photolithography, outperforms previously reported absorbers in cost. Moreover, it exhibits considerably lower emissivity (weak absorption) in the mid-infrared range, which makes it promising for energy harvesting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA