Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071377

RESUMEN

Background: The All of Us (AoU) Research Program provides a comprehensive genomic dataset to accelerate health research and medical breakthroughs. Despite its potential, researchers face significant challenges, including high costs and inefficiencies associated with data extraction and analysis. AoUPRS addresses these challenges by offering a versatile and cost-effective tool for calculating polygenic risk scores (PRS), enabling both experienced and novice researchers to leverage the AoU dataset for significant genomic discoveries. Results: AoUPRS is implemented in Python and utilizes the Hail framework for genomic data analysis. It offers two distinct approaches for PRS calculation: the Hail MatrixTable (MT) and the Hail Variant Dataset (VDS). The MT approach provides a dense representation of genotype data, while the VDS approach offers a sparse representation, significantly reducing computational costs. In performance evaluations, the VDS approach demonstrated a cost reduction of up to 99.51% for smaller scores and 85% for larger scores compared to the MT approach. Both approaches yielded similar predictive power, as shown by logistic regression analyses of PRS for coronary artery disease, atrial fibrillation, and type 2 diabetes. The empirical cumulative distribution functions (ECDFs) for PRS values further confirmed the consistency between the two methods. Conclusions: AoUPRS is a versatile and cost-effective tool that addresses the high costs and inefficiencies associated with PRS calculations using the AoU dataset. By offering both dense and sparse data processing approaches, AoUPRS allows researchers to choose the approach best suited to their needs, facilitating genomic discoveries. The tool's open-source availability on GitHub, coupled with detailed documentation and tutorials, ensures accessibility and ease of use for the scientific community.

2.
Res Sq ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38196609

RESUMEN

Coronary artery disease (CAD) remains the leading cause of mortality and morbidity worldwide. Recent advances in large-scale genome-wide association studies have highlighted the potential of genetic risk, captured as polygenic risk scores (PRS), in clinical prevention. However, the current clinical utility of PRS models is limited to identifying high-risk populations based on the top percentiles of genetic susceptibility. While some studies have attempted integrative prediction using genetic and non-genetic factors, many of these studies have been cross-sectional and focused solely on risk stratification. Our primary objective in this study was to integrate unmodifiable (age / genetics) and modifiable (clinical / biometric) risk factors into a prospective prediction framework which also produces actionable and personalized risk estimates for the purpose of CAD prevention in a heterogenous adult population. Thus, we present an integrative, omnigenic, meta-prediction framework that effectively captures CAD risk subgroups, primarily distinguished by degree and nature of genetic risk, with distinct risk reduction profiles predicted from standard clinical interventions. Initial model development considered ~ 2,000 predictive features, including demographic data, lifestyle factors, physical measurements, laboratory tests, medication usage, diagnoses, and genetics. To power our meta-prediction approach, we stratified the UK Biobank into two primary cohorts: 1) a prevalent CAD cohort used to train baseline and prospective predictive models for contributing risk factors and diagnoses, and 2) an incident CAD cohort used to train the final CAD incident risk prediction model. The resultant 10-year incident CAD risk model is composed of 35 derived meta-features from models trained on the prevalent risk cohort, most of which are predicted baseline diagnoses with multiple embedded PRSs. This model achieved an AUC of 0.81 and macro-averaged F1-score of 0.65, outperforming standard clinical scores and prior integrative models. We further demonstrate that individualized risk reduction profiles can be derived from this model, with genetic risk mediating the degree of risk reduction achieved by standard clinical interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA