Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(6): 8341-8349, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225461

RESUMEN

Active spectral tuning of nanophotonic devices offers many fascinating prospects for the realization of novel optical function. Here, switchable spectral response is enabled by the architecture of one-dimensional (1D) photonic crystal (PC) integrated with phase change material of the germanium antimony telluride (GST). Active and precise tuning of the bistable passband and central resonant frequency is demonstrated in the 1D PC composed of alternate SiN and GST nanofilms. An analytical model is derived to specify the tunable spectral features, including the band gap and resonant frequencies. Both the measured and calculated results show distinct red shifts of passband and the resonant minima (or maxima), well confirming theoretical predictions. This work demonstrates a route to construct active photonic devices with the electrically or thermally tunable spectra via 1D PC and potentially extends diverse applications based on the PC platform.

2.
Nanomaterials (Basel) ; 14(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39120421

RESUMEN

Metasurfaces have emerged as a unique group of two-dimensional ultra-compact subwavelength devices for perfect wave absorption due to their exceptional capabilities of light modulation. Nonetheless, achieving high absorption, particularly with multi-band broadband scalability for specialized scenarios, remains a challenge. As an example, the presence of atmospheric windows, as dictated by special gas molecules in different infrared regions, highly demands such scalable modulation abilities for multi-band absorption and filtration. Herein, by leveraging the hybrid effect of Fabry-Perot resonance, magnetic dipole resonance and electric dipole resonance, we achieved multi-broadband absorptivity in three prominent infrared atmospheric windows concurrently, with an average absorptivity of 87.6% in the short-wave infrared region (1.4-1.7 µm), 92.7% in the mid-wave infrared region (3.2-5 µm) and 92.4% in the long-wave infrared region (8-13 µm), respectively. The well-confirmed absorption spectra along with its adaptation to varied incident angles and polarization angles of radiations reveal great potential for fields like infrared imaging, photodetection and communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA