Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 48(2): 248-55, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25574854

RESUMEN

CONSPECTUS: Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to design catalysts by computer. In this Account, we first review how thermodynamic properties such as redox potentials (E°), acidity constants (pKa), and hydride donor abilities (ΔGH(-)) form the basis for a framework for the systematic design of molecular catalysts for reactions that are critical for a secure energy future. We illustrate this for hydrogen evolution and oxidation, oxygen reduction, and CO conversion, and we give references to other instances where it has been successfully applied. The framework is amenable to quantum-chemical calculations and conducive to predictions by computer. We review how density functional theory allows the determination and prediction of these thermodynamic properties within an accuracy relevant to experimentalists (∼0.06 eV for redox potentials, ∼1 pKa unit for pKa values, and 1-2 kcal/mol for hydricities). Computation yielded correlations among thermodynamic properties as they reflect the electron population in the d shell of the metal center, thus substantiating empirical correlations used by experimentalists. These correlations point to the key role of redox potentials and other properties (pKa of the parent aminium for the proton-relay-based catalysts designed in our laboratory) that are easily accessible experimentally or computationally in reducing the parameter space for design. These properties suffice to fully determine free energies maps and profiles associated with catalytic cycles, i.e., the relative energies of intermediates. Their prediction puts us in a position to distinguish a priori between desirable and undesirable pathways and mechanisms. Efficient catalysts have flat free energy profiles that avoid high activation barriers due to low- and high-energy intermediates. The criterion of a flat energy profile can be mathematically resolved in a functional in the reduced parameter space that can be efficaciously calculated by means of the correlation expressions. Optimization of the functional permits the prediction by computer of design points for optimum catalysts. Specifically, the optimization yields the values of the thermodynamic properties for efficient (high rate and low overpotential) catalysts. We are on the verge of design of molecular electrocatalysts by computer. Future efforts must focus on identifying actual ligands that possess these properties. We believe that this can also be achieved through computation, using Taft-like relationships linking molecular composition and structure with electron-donating ability and steric effects. We note also that the approach adopted here of using free energy maps to decipher catalytic pathways and mechanisms does not account for kinetic barriers associated with elementary steps along the catalytic pathway, which may make thermodynamically accessible intermediates kinetically inaccessible. Such an extension of the approach will require further computations that, however, can take advantage of Polanyi-like linear free energy relationships linking activation barriers and reaction free energies.

2.
Inorg Chem ; 54(10): 4827-39, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25933172

RESUMEN

The reduction of fac-[CrCl3(P(Ph)3N(Bn)3)], (1(Cl3)), (P(Ph)3N(Bn)3 = 1,5,9-tribenzyl-3,7,11-triphenyl-1,5,9-triaza-3,7,11-triphosphacyclododecane) with Mg in the presence of dmpe (dmpe = 1,2-bis(dimethylphosphino)ethane) affords the first example of a monodinitrogen Cr(0) complex, Cr(N2)(dmpe)(P(Ph)3N(Bn)3), (2(N2)), containing a pentaphosphine coordination environment. 2(N2) is supported by a unique facially coordinating 12-membered phosphorus macrocycle containing pendant amine groups in the second coordination sphere. Treatment of 2(N2) at -78 °C with 1 equiv of [H(OEt2)2][B(C6F5)4] results in protonation of the metal center, generating the seven-coordinate Cr(II)-N2 hydride complex, [Cr(H)(N2)(dmpe)(P(Ph)3N(Bn)3)][B(C6F5)4], [2(H)(N2)](+). Treatment of 2((15)N2) with excess triflic acid at -50 °C afforded a trace amount of (15)NH4(+) from the reduction of the coordinated (15)N2 ligand (electrons originate from Cr). Electronic structure calculations were employed to evaluate the pKa values of three protonated sites of 2(N2) (metal center, pendant amine, and N2 ligand) and were used to predict the thermodynamically preferred Cr-NxHy intermediates in the N2 reduction pathway for 2(N2) and the recently published complex trans-[Cr(N2)2(P(Ph)4N(Bn)4)] upon the addition of protons and electrons.


Asunto(s)
Cromo/química , Complejos de Coordinación/química , Cicloparafinas/química , Nitrógeno/química , Protones , Aminas/química , Derivados del Benceno/química , Magnesio/química , Fosfinas/química , Termodinámica
3.
J Am Chem Soc ; 135(31): 11493-6, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23865433

RESUMEN

We report a rare example of a Cr-N2 complex supported by a 16-membered phosphorus macrocycle containing pendant amine bases. Reactivity with acid afforded hydrazinium and ammonium, representing the first example of N2 reduction by a Cr-N2 complex. Computational analysis examined the thermodynamically favored protonation steps of N2 reduction with Cr leading to the formation of hydrazine.

4.
Inorg Chem ; 52(7): 4026-39, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23506204

RESUMEN

The addition of acids to ferrous dinitrogen complexes [FeX(N2)(P(Et)N(Me)P(Et))(dmpm)](+) (X = H, Cl, or Br; P(Et)N(Me)P(Et) = Et2PCH2N(Me)CH2PEt2; and dmpm = Me2PCH2PMe2) gives protonation at the pendent amine of the diphosphine ligand rather than at the dinitrogen ligand. This protonation increased the νN2 band of the complex by 25 cm(-1) and shifted the Fe(II/I) couple by 0.33 V to a more positive potential. A similar IR shift and a slightly smaller shift of the Fe(II/I) couple (0.23 V) was observed for the related carbonyl complex [FeH(CO)(P(Et)N(Me)P(Et))(dmpm)](+). [FeH(P(Et)N(Me)P(Et))(dmpm)](+) was found to bind N2 about three times more strongly than NH3. Computational analysis showed that coordination of N2 to Fe(II) centers increases the basicity of N2 (vs free N2) by 13 and 20 pKa units for the trans halides and hydrides, respectively. Although the iron center increases the basicity of the bound N2 ligand, the coordinated N2 is not sufficiently basic to be protonated. In the case of ferrous dinitrogen complexes containing a pendent methylamine, the amine site was determined to be the most basic site by 30 pKa units compared to the N2 ligand. The chemical reduction of these ferrous dinitrogen complexes was performed in an attempt to increase the basicity of the N2 ligand enough to promote proton transfer from the pendent amine to the N2 ligand. Instead of isolating a reduced Fe(0)-N2 complex, the reduction resulted in isolation and characterization of HFe(Et2PC(H)N(Me)CH2PEt2)(P(Et)N(Me)P(Et)), the product of oxidative addition of the methylene C-H bond of the P(Et)N(Me)P(Et) ligand to Fe.

5.
J Am Chem Soc ; 134(14): 6257-72, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22394350

RESUMEN

The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 Å, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.


Asunto(s)
Electroquímica/métodos , Hidrógeno/química , Hidrogenasas/química , Hierro/química , Fosfinas/química , Benceno/química , Electrones , Compuestos Ferrosos/química , Flúor/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oxidación-Reducción
6.
Chemistry ; 18(21): 6493-506, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22532421

RESUMEN

We present the results of a comprehensive theoretical investigation of the role of pendant amine ligands in the oxidation of H(2) and formation of H(2) by [Ni(P(R)(2)N(R')(2))(2)](2+) electrocatalysts (P(R)(2)N(R')(2) is the 1,5-R'-3,7-R derivative of 1,5-diaza-3,7-diphosphacyclooctane, in which R and R' are aryl or alkyl groups). We focus our analysis on the thermal steps of the catalytic cycle, as they are known to be rate-determining for both H(2) oxidation and production. We find that the presence of pendant amine functional groups greatly facilitates the heterolytic H(2) bond cleavage, resulting in a protonated amine and a Ni hydride. Only one single positioned pendant amine is required to serve this function. The pendant amine can also effectively shuttle protons to the active site, making the redistribution of protons and the H(2) evolution a very facile process. An important requirement for the overall catalytic process is the positioning of at least one amine in close proximity to the metal center. Indeed, only protonation of the pendant amines on the metal center side (endo position) leads to catalytically active intermediates, whereas protonation on the opposite side of the metal center (exo position) leads to a variety of isomers, which are detrimental to catalysis.

7.
J Am Chem Soc ; 133(36): 14301-12, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21595478

RESUMEN

Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.


Asunto(s)
Aminas/química , Hidrógeno/química , Níquel/química , Protones , Catálisis , Espectroscopía de Resonancia Magnética , Oxidación-Reducción
8.
J Phys Chem A ; 115(18): 4861-5, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21504191

RESUMEN

In the title paper, Vetere et al. reported a computational investigation of the mechanism of H(2) oxidation/proton reduction using a model of nickel-based electrocatalysts that incorporates pendant amines in cyclic phosphorus ligands. These catalysts are attracting considerable attention owing to their high turnover rates and relatively low overpotentials. These authors interpreted the results of their calculations as evidence for a symmetric bond cleavage of H(2) leading directly to two protonated amines in concert with a two-electron reduction of the Ni(II) site to form a Ni(0) diproton state. Proton reduction would involve a reverse symmetric bond formation. We report here an analysis that refutes the interpretation by these authors. We give, for the same model system, the structure of a heterolytic cleavage transition state consistent with the presence of the Ni(II) center acting as a Lewis acid and the pendant amines acting as Lewis bases. We present the associated intrinsic reaction coordinate (IRC) pathway connecting the dihydrogen (η(2)-H(2)) adduct and a hydride-proton state. We report also the transition state and associated IRC for the proton rearrangement from a hydride-proton state to a diproton state. Finally, we complete the characterization of the transition state reported by Vetere et al. through a determination of the corresponding IRC. In summary, H(2) oxidation/proton reduction with this class of catalysts involves a heterolytic bond breaking/formation.


Asunto(s)
Hidrógeno/química , Compuestos Organometálicos/química , Protones , Teoría Cuántica , Aminas/química , Catálisis , Electroquímica , Níquel/química , Oxidación-Reducción
9.
J Phys Chem A ; 114(48): 12716-24, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21070021

RESUMEN

A systematic assessment of theoretical methods applicable to the accurate characterization of catalytic cycles of homogeneous catalysts for H(2) oxidation and evolution is reported. The key elementary steps involve heterolytic cleavage of the H-H bond and formation/cleavage of Ni-H and N-H bonds. In the context of density functional theory (DFT), we investigated the use of functionals in the generalized gradient approximation (GGA) as well as hybrid functionals. We compared the results with wave-function theories based on perturbation theory (MP2 and MP4) and on coupled-cluster expansions [CCD, CCSD, and CCSD(T)]. Our findings indicate that DFT results based on Perdew correlation functionals are in semiquantitative agreement with the CCSD(T) results, with deviations of only a few kilocalories/mole. On the other hand, the B3LYP functional is not even in qualitative agreement with CCSD(T). Surprisingly, the MP2 results are found to be extremely poor, in particular for the diproton Ni(0) and dihydride Ni(IV) species on the reaction potential energy surface. The Hartree-Fock reference wave function in MP2 theory gives a poor reference state description for these states that are electron rich on Ni, giving rise to erroneous MP2 energies. We present a detailed potential-energy diagram for the oxidation of H(2) by these catalysts after accounting for the effects of solvation, as modeled by a polarizable continuum, and of free energy estimated at the harmonic level of theory.


Asunto(s)
Hidrógeno/química , Níquel/química , Compuestos Organometálicos/química , Teoría Cuántica , Catálisis , Oxidación-Reducción
10.
Inorg Chem ; 48(21): 10358-63, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19817388

RESUMEN

The original "chop-chop" reaction reported by Schrock [J. Am. Chem. Soc. 1982, 104, 4291] involving W(2)(O(t)Bu)(6) and organic nitriles, RC[triple bond]N to give the metal alkylidyne and nitride products ((t)BuO)(3)WC[triple bond]R and ((t)BuO)(3)WC[triple bond]N, has been examined by a density functional theory based calculation where the bulky (t)BuO ligands have been substituted by MeO. The reaction between W(2)(OMe)(6) and MeCN proceeds via a ditungstaazacyclobutadiene intermediate having a planar W(2)CN core, I, with a structure related to that seen for Mo(2)(OCH(2)(t)Bu)(6)(mu-NCNMe(2)). Another possible intermediate having a pseudo tetrahedral W(2)CN core, II, a ditungstaazatetrahedrane was examined and shown to have a higher energy. The interconversion of I and II was found to be energetically unfavorable with respect to their formation of metathesis products. The highest energy transition state involving the conversion of I to products was comparable to that for the conversion of II to products but the initial formation of I from the reaction between W(2)(OMe)(6) and MeCN was favored over the formation of II. The related reaction between Mo(2)(OMe)(6) and MeCN was shown to be thermodynamically unfavorable with respect to either adduct formation or metathesis products. However the reaction between Mo(2)(OMe)(6) and Me(2)NCN did yield a thermodynamically favored 1:1 adduct with a structure related to I.

11.
Inorg Chem ; 48(3): 828-37, 2009 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-19099428

RESUMEN

The electronic structures of the molecules ((t)BuO)(3)M[triple bond]N (M = Cr, Mo, W) have been investigated with gas phase photoelectron spectroscopy and density functional calculations. It is found that the alkoxide orbitals mix strongly with the M[triple bond]N triple bond orbitals and contribute substantially to the valence electronic structure. The first ionization of ((t)BuO)(3)Cr[triple bond]N is from an orbital of a(2)(C(3v)) symmetry that is oxygen based and contains no metal or nitrogen character by symmetry. In contrast, the first ionizations of the molybdenum and tungsten analogues are from orbitals of a(1) and e symmetry that derive from the highest occupied M[triple bond]N sigma and pi orbitals mixed with the appropriate symmetry combinations of the oxygen p orbitals. In this a(1) orbital, the oxygen p orbitals mix with the highest occupied M[triple bond]N orbital of sigma symmetry. This mixing reduces the metal character, consequently reducing the metal-nitrogen overlap interaction in this orbital. From computational modeling, the polarity of the M[triple bond]N bond increases down the group such that W[triple bond]N has the highest charge separation. In addition to investigation of the effects of the metals, the electronic influences of substitution at the alkoxide ligands have been examined for the molecules (RO)(3)Mo[triple bond]N (R = C(CH(3))(2)H, C(CH(3))(3), and C(CH(3))(2)CF(3)). The introduction of CF(3) groups stabilizes the molecular orbital energies and increases the measured ionization energies, but does not alter the overall electronic structure. The bonding characteristics of the ((t)BuO)(3)M[triple bond]N series are compared with those of organic nitriles.

12.
Chem Commun (Camb) ; 47(44): 12212-4, 2011 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-21993453

RESUMEN

Cis and trans-Cr-N(2) complexes supported by the diphosphine ligand P(Ph)(2)N(Bn)(2) have been prepared. Positioned pendant amines in the second coordination sphere influence the thermodynamically preferred geometric isomer. Electronic structure calculations indicate negligible Cr-N(2) back-bonding; rather, electronic polarization of N(2) ligand is thought to stabilize Cr-N(2) binding.


Asunto(s)
Cromo/química , Nitrógeno/química , Fosfinas/química , Aminas/química , Furanos/química , Ligandos , Magnesio/química , Estructura Molecular
13.
Chem Commun (Camb) ; 46(45): 8618-20, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20938535

RESUMEN

A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(P(Cy)(2)N(t-Bu)(2))(2)](2+) has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turnover rate of 50 s(-1) under 1.0 atm H(2) at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H(2) oxidation catalyst.

14.
Inorg Chem ; 47(12): 5377-85, 2008 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-18459728

RESUMEN

(ButO)3Mo triple bond N and W2(OBut)6(M triple bond M) react in hydrocarbons to form Mo2(OBut)6(M triple bond M) and (ButO)3W triple bond N via the reactive intermediate MoW(OBut)6(M triple bond M). (ButO)3W triple bond N and CH3C triple bond N15 react in tetrahydrofuran (THF) at room temperature to give an equilibrium mixture involving (ButO)3W triple bond N15 and CH3C triple bond N. The (ButO)3W triple bond N compound is similarly shown to act as a catalyst for N15-atom scrambling between MeC13 triple bond N15 and PhC triple bond N to give a mixture of MeC13 triple bond N and PhC triple bond N15. From studies of degenerate scrambling of N atoms involving (ButO)3W triple bond N and MeC13 triple bond N in THF-d8 by 13C(1H) NMR spectroscopy, the reaction was found to be first order in acetonitrile and the activation parameters were estimated to be DeltaH = 13.4(7) kcal/mol and DeltaS = -32(2) eu. A similar reaction is observed for (ButO)3Mo triple bond N and CH3C triple bond N15 upon heating in THF-d8. The reaction is suppressed in pyridine solutions and not observed for the dimeric [(ButMe2SiO)3W triple bond N]2. The reaction pathway has been investigated by calculations employing density functional theory on the model compounds (MeO)3M triple bond N and CH3C triple bond N where M = Mo and W. The transition state was found to involve a product of the 2 + 2 cycloaddition of M triple bond N and C triple bond N, a planar metalladiazacyclobutadiene. This resembles the pathway calculated for alkyne metathesis involving (MeO)3W triple bond CMe, which modeled the metathesis of (ButO)3W triple bond CBut. The calculations also predict that the energy of the transition state is notably higher for M = Mo relative to M = W.

15.
Inorg Chem ; 43(3): 931-44, 2004 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-14753813

RESUMEN

Six new metal-organic coordination networks based on linking unit 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (L(1)) or 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L(3)) and inorganic Cu(II), Cd(II), and Co(II) salts have been prepared and structurally characterized by single-crystal X-ray analysis. Using L(1) to react with three different Cu(II) salts, Cu(OAc)(2).H(2)O, Cu(NO(3))(2).3H(2)O, and CuSO(4).5H(2)O, respectively, two different one-dimensional (1-D) coordination polymers, [[Cu(2)L(1)(mu-OAc)(4)](CHCl(3))(2)](n) (1) [triclinic, space group P1, a = 7.416(3) A, b = 8.207(3) A, c = 14.137(5) A, alpha = 100.333(7) degrees, beta = 105.013(6) degrees, gamma = 94.547(6) degrees, Z = 1] and [[CuL(1)(NO(3))(2)](CHCl(3))(0.5)](n) (2) [monoclinic, space group C2/c, a = 28.070(8) A, b = 9.289(3) A, c = 15.235(4) A, beta = 113.537(5) degrees, Z = 8], and a chiral 3-D open framework, [[CuL(1)(H(2)O)(SO(4))](H(2)O)(2)](n) (3) [orthorhombic, space group P2(1)2(1)2(1), a = 5.509(2) A, b = 10.545(4) A, c = 29.399(11) A, Z = 4], were obtained. Reaction of L(1) and Cd(ClO(4))(2).6H(2)O or Co(ClO(4))(2).6H(2)O, in the presence of NH(4)SCN, yielded another 3-D open framework, [[CdL(1)(NCS)(2)](CH(3)OH)(1.5)](n) (4) [monoclinic, space group C2/c, a = 28.408(10) A, b = 9.997(5) A, c = 7.358(4) A, beta = 99.013(8) degrees, Z = 4], or a 2-D network, [[Co(L(1)())(2)(NCS)(2)](H(2)O)(2.5)](n) (5) [orthorhombic, space group Pnna, a = 22.210(5) A, b = 12.899(3) A, c = 20.232(4) A, Z = 4]. When L(1) was replaced by L(3) to react with Co(ClO(4))(2).6H(2)O and NH(4)SCN, another 2-D coordination polymer, [Co(L(3))(2)(NCS)(2)](n) (6) [monoclinic, space group P2(1)/c, a = 8.120(3) A, b = 9.829(4) A, c = 17.453(6) A, beta = 103.307(6) degrees, Z = 2], was constructed. These results indicate that the nature of the ligands, metal centers, or counteranions plays the critical role in construction of these novel coordination polymers. The interesting porous natures of two 3-D open frameworks 3 and 4 were investigated by TGA and XPRD techniques, and the magnetic properties of the Cu(II) and Co(II) complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements.

16.
Inorg Chem ; 43(4): 1287-93, 2004 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-14966963

RESUMEN

The formation, crystal structures, and properties of a series of three-dimensional (3-D) Cu(II) coordination polymers, [[Cu(L)2(H2O)2](PF6)2(H2O)(1.25)]n (1), [[CuL(N3)2](H2O)(1.5)]n (2), and [[CuL(H2O)(SO4)](H2O)2]n (3), with an angular bridging ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L) are reported. Complex 1 crystallizes in the tetragonal I4(1)/a space group (a = b = 13.462(2) A, c = 46.47(1) A, Z = 8), complex 2 in the orthorhombic Pna2(1) space group (a = 6.379(2) A, b = 10.060(3) A, c = 27.232(9) A, Z = 4), and complex 3 in the orthorhombic P2(1)2(1)2(1) space group (a = 5.510(2) A, b = 10.576(4) A, c = 28.34(1) A, Z = 4). Different polymeric frameworks are obtained by only varying the counterions. These include the 2-fold interpenetrated diamondoid structure of 1, the acentric alpha-Po network of 2, and the chiral open framework of 3 with (6(3)).(6(9).8) topology. The interesting anion-exchange, porous, and magnetic properties of these coordination supramolecules have been investigated in detail.

17.
Inorg Chem ; 42(2): 552-9, 2003 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-12693238

RESUMEN

The reaction of various CuII salts with 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L) in CH3CN-H2O medium affords different complexes, the solid structures of which are controlled only by the choice of the counteranions. Reaction of Cu-(ClO4)2.6H2O or Cu(NO3)2.3H2O and L yields the novel bimetallic macrocyclic complex [Cu2L2(H2O)6](ClO4)4(H2O)4 (1) [monoclinic, space group P21/m, a = 8.745(5) A, b = 16.179(10) A, c = 14.930(8) A, beta = 93.253(10) degrees, Z = 2] or [CuL(NO3)2]2(CH3CN)2 (2) [triclinic, space group P1, a = 7.863(3) A, b = 8.679(3) A, c = 13.375(5) A, alpha = 74.121(5) degrees, beta = 78.407(6) degrees, gamma = 86.307(6) degrees, Z = 1]. However, with the replacement of CuII perchlorate or nitrate salts with CuSO4.5H2O or Cu(OAc)2.H2O in the above reaction, two different one-dimensional (1-D) coordination polymers [[Cu2L2(H2O)6(SO4)2](H2O)6]n (3) [triclinic, space group P1, a = 7.078(3) A, b = 11.565(4) A, c = 12.561(5) A, alpha = 109.511(6) degrees, beta = 105.265(6) degrees, gamma = 94.042(6) degrees, Z = 1] or [[Cu2L(mu-OAc)4]]n (4) [monoclinic, space group C2/c, a = 20.007(7) A, b = 7.506(2) A, c = 16.062(5) A, beta = 108.912(5) degrees, Z = 4] were obtained. These results unequivocally indicate that the nature of the counteranions, which play different roles in each complex, is the key factor governing the structural topologies of them. The magnetic properties of these CuII complexes have been investigated by variable-temperature magnetic susceptibility and magnetization measurements, and the magneto-structural correlation has been analyzed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA