Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Dis ; 108(5): 1157-1164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38127630

RESUMEN

Huanglongbing (HLB) is a citrus infectious disease caused by 'Candidatus Liberibacter' spp. Recently, it has begun to spread rapidly worldwide, causing significant losses to the citrus industry. Early diagnosis of HLB relies on quantitative real-time PCR assays. However, the PCR inhibitors found in the nucleic acid extracted from plant materials pose challenges for PCR assays because they may result in false-negative results. Internal standard (IS) can be introduced to establish a single-tube duplex PCR for monitoring the influence of the PCR inhibitor, but it also brings the risk of false-negative results because the amplification of IS may compete with the target. To solve this problem, we proposed a mutation-enhanced single-tube duplex PCR (mSTD-PCR) containing IS with mutant-type primers. By introducing the 3'-terminal mutation in the primer of IS to weaken its amplification reaction and its inhibition of 'Candidatus Liberibacter asiaticus' (CLas) detection, the sensitivity and quantitative accuracy of CLas detection will not be affected by IS. In evaluating the sensitivity of CLas detection using simulation samples, the mSTD-PCR showed consistent sensitivity at 25 copies per test compared with the single-plex CLas assay. The detection result of 30 leaves and 30 root samples showed that the mSTD-PCR could recognize false-negative results caused by the PCR inhibitors and reduce workload by 48% compared with the single-plex CLas assay. Generally, the proposed mSTD-PCR provides a reliable, efficient, inhibitor-monitorable, quantitative screening method for accurately controlling HLB and a universal method for establishing a PCR assay for various pathogens.


Asunto(s)
Citrus , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhizobiaceae , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Cartilla de ADN/genética , Sensibilidad y Especificidad , Mutación , ADN Bacteriano/genética , Liberibacter/genética
3.
Plant Cell ; 25(7): 2573-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23903319

RESUMEN

Orthodox seeds are capable of withstanding severe dehydration. However, in the dehydrated state, Asn and Asp residues in proteins can convert to succinimide residues that can further react to predominantly form isomerized isoAsp residues upon rehydration (imbibition). IsoAsp residues can impair protein function and can render seeds nonviable, but PROTEIN ISOASPARTYL METHYLTRANSFERASE (PIMT) can initiate isoAsp conversion to Asp residues. The proteins necessary for translation upon imbibition in orthodox seeds may be particularly important to maintain in an active state. One such protein is the large, multidomain protein, Arabidopsis thaliana PLANT RNA HELICASE75 (PRH75), a DEAD-box helicase known to be susceptible to isoAsp residue accumulation. However, the consequences of such isomerization on PRH75 catalysis and for the plant are unknown. Here, it is demonstrated that PRH75 is necessary for successful seed development. It acquires isoAsp rapidly during heat stress, which eliminates RNA unwinding (but not rewinding) competence. The repair by PIMT is able to restore PRH75's complex biochemical activity provided isoAsp formation has not led to subsequent, destabilizing conformational alterations. For PRH75, an important enzymatic activity associated with translation would be eliminated unless rapidly repaired by PIMT prior to additional, deleterious conformational changes that would compromise seed vitality and germination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ARN Helicasas DEAD-box/metabolismo , Ácido Isoaspártico/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dicroismo Circular , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Estabilidad de Enzimas , Prueba de Complementación Genética , Calor , Humanos , Ácido Isoaspártico/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación , Desnaturalización de Ácido Nucleico , Plantas Modificadas Genéticamente , Conformación Proteica , ARN/química , ARN/genética , ARN/metabolismo , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
J Fungi (Basel) ; 10(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921413

RESUMEN

Arbuscular mycorrhizal (AM) fungi can enhance the uptake of soil nutrients and water by citrus, promoting its growth. However, the specific mechanisms underlying the action of AM fungi in promoting the growth of citrus were not fully elucidated. This study aimed to explore the role of AM fungi Funneliformis mosseae in the regulatory mechanisms of P. trifoliata growth. Pot experiments combined with non-targeted metabolomics methods were used to observe the growth process and changes in metabolic products of P. trifoliata under the conditions of F. mosseae inoculation. The results showed that F. mosseae could form an excellent symbiotic relationship with P. trifoliata, thereby enhancing the utilization of soil nutrients and significantly promoting its growth. Compared with the control, the plant height, stem diameter, number of leaves, and aboveground and underground dry weight in the F. mosseae inoculation significantly increased by 2.57, 1.29, 1.57, 4.25, and 2.78 times, respectively. Moreover, the root system results confirmed that F. mosseae could substantially promote the growth of P. trifoliata. Meanwhile, the metabolomics data indicated that 361 differential metabolites and 56 metabolic pathways were identified in the roots of P. trifoliata and were inoculated with F. mosseae. This study revealed that the inoculated F. mosseae could participate in ABC transporters by upregulating their participation, glycerophospholipid metabolism, aminoacyl tRNA biosynthesis, tryptophan metabolism and metabolites from five metabolic pathways of benzoxazinoid biosynthesis [mainly enriched in lipid (39.50%) and amino acid-related metabolic pathways] to promote the growth of P. trifoliata.

5.
Ying Yong Sheng Tai Xue Bao ; 34(2): 481-490, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36803726

RESUMEN

Nutrient enrichment caused by fertilization would reduce the diversity of arbuscular mycorrhizal fungi (AMF). To explore whether partial substitution of chemical fertilizer with organic fertilizer would alleviate the negative effects of nutrient enrichment on AMF, we conducted a two-year mango (Mangifera indica) field experiment to examine the effects of different fertilization regimes on AMF communities in roots and rhizospheric soils by using high-throughput sequencing. The treatments included chemical-only fertilization (control), and two kinds of organic fertilizer (commercial organic fertilizer and bio-organic fertilizer) with replacing 12% (low) and 38% (high) chemical fertilizer. The results showed that under equivalent nutrient input, partial substitution of chemical fertilizer with organic fertilizer had positive effects on the yield and quality of mango. The application of organic fertilizer could effectively increase AMF richness. AMF diversity was significantly positively correlated with some indices of fruit quality. Compared with chemical-only fertilization, high replacement ratio of organic fertilizer could significantly change root AMF community, but did not affect AMF community in the rhizospheric soil. Bio-organic fertilizer could enrich more AMF species and form a more complex AMF co-occurrence network than commercial organic fertilizer. In all, replacing chemical fertilizer with a high proportion of organic fertilizer could improve the yield and quality of mango while maintain AMF richness. The changes of AMF community caused by organic fertilizer substitution pre-ferably occurred in roots rather than soils.


Asunto(s)
Mangifera , Micobioma , Micorrizas , Fertilizantes , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo
6.
Front Microbiol ; 14: 1203796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744902

RESUMEN

Ginger is one of the important spice crops in the world. Due to the prevalence of ginger wilt disease and the lack of effective prevention and control methods, the planting area, total production and value have declined sharply, which have become a key factor restricting ginger industry development in China. Understanding the influence of microbial agents on the rhizosphere microbiota of ginger will facilitate developing novel technologies for the prevention and control of ginger wilt disease. In the new planting and continuous cropping ginger fields, using large-root ginger and microbial agents, two inoculation levels (inoculation and no inoculation) were designed, and high-throughput sequencing technology was used to study the bacterial community structure in the rhizosphere soil at mature stage of ginger. The results showed that newly planted ginger showed a significant yield advantage over continuous cropping ginger, with a yield increase of 39% to 56%, and the lowest ginger wilt disease index. The community structure at the phylum level of soil bacteria in each treatment was very similar to that in the control, but the abundance of some taxonomic units changed significantly. The four dominant phyla of bacteria in mature ginger rhizosphere soil were Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, accounting for 72.91% to 89.09% of the total. The microbial agent treatment of continuous cropping had beneficial microorganisms such as Acidobacteria and Gemmatimonadetes with abundances increased by 12.2% and 17.1%, respectively, compared to the control. The microbial inoculant treatment of newly planted ginger increased the abundance of Acidobacteria and Gemmatimonadetes by 34.4% and 10.7%, respectively, compared to the control. The composition of bacterial communities were affected by changes in soil properties. Redundancy analysis showed that the hydrolysable nitrogen, available phosphorus, available potassium, and organic matter were significantly related to the composition of soil bacterial communities. Therefore, the microbial agents can not only promote the proliferation of beneficial microorganisms in the continuous cropping soil but also further reshape the soil bacterial community structure by changing the soil physicochemical properties such as effective phosphorus. These results provided a reference for related research on the impact of ginger continuous cropping on soil environment and soil management improvement in ginger fields.

7.
Front Microbiol ; 14: 1096754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152763

RESUMEN

Sugarcane is an important sugar and bioenergy source and a significant component of the economy in various countries in arid and semiarid. It requires more synthetic fertilizers and fungicides during growth and development. However, the excess use of synthetic fertilizers and fungicides causes environmental pollution and affects cane quality and productivity. Plant growth-promoting bacteria (PGPB) indirectly or directly promote plant growth in various ways. In this study, 22 PGPB strains were isolated from the roots of the sugarcane variety GT42. After screening of plant growth-promoting (PGP) traits, it was found that the DJ06 strain had the most potent PGP activity, which was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing. Scanning electron microscopy (SEM) and green fluorescent protein (GFP) labeling technology confirmed that the DJ06 strain successfully colonized sugarcane tissues. The complete genome sequencing of the DJ06 strain was performed using Nanopore and Illumina sequencing platforms. The results showed that the DJ06 strain genome size was 64,90,034 bp with a G+C content of 66.34%, including 5,912 protein-coding genes (CDSs) and 12 rRNA genes. A series of genes related to plant growth promotion was observed, such as nitrogen fixation, ammonia assimilation, siderophore, 1-aminocyclopropane-1-carboxylic acid (ACC), deaminase, indole-3-acetic acid (IAA) production, auxin biosynthesis, phosphate metabolism, hydrolase, biocontrol, and tolerance to abiotic stresses. In addition, the effect of the DJ06 strain was also evaluated by inoculation in two sugarcane varieties GT11 and B8. The length of the plant was increased significantly by 32.43 and 12.66% and fresh weight by 89.87 and 135.71% in sugarcane GT11 and B8 at 60 days after inoculation. The photosynthetic leaf gas exchange also increased significantly compared with the control plants. The content of indole-3-acetic acid (IAA) was enhanced and gibberellins (GA) and abscisic acid (ABA) were reduced in response to inoculation of the DJ06 strain as compared with control in two sugarcane varieties. The enzymatic activities of oxidative, nitrogen metabolism, and hydrolases were also changed dramatically in both sugarcane varieties with inoculation of the DJ06 strain. These findings provide better insights into the interactive action mechanisms of the P. aeruginosa DJ06 strain and sugarcane plant development.

8.
Front Plant Sci ; 13: 1040134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699828

RESUMEN

Background: Arbuscular mycorrhizal fungi (AMF) are beneficial soil fungi which can effectively help plants with acquisition of mineral nutrients and water and promote their growth and development. The effects of indigenous and commercial isolates of arbuscular mycorrhizal fungi on pear (Pyrus betulaefolia) trees, however, remains unclear. Methods: Trifolium repens was used to propagate indigenous AMF to simulate spore propagation in natural soils in three ways: 1. the collected soil was mixed with fine roots (R), 2. fine roots were removed from the collected soil (S), and 3. the collected soil was sterilized with 50 kGy 60Co γ-radiation (CK). To study the effects of indigenous AMF on root growth and metabolism of pear trees, CK (sterilized soil from CK in T. repens mixed with sterilized standard soil), indigenous AMF (R, soil from R in T. repens mixed with sterilized standard soil; S, soil from S in T. repens mixed with sterilized standard soil), and two commercial AMF isolates (Rhizophagus intraradices(Ri) and Funneliformis mosseae (Fm)) inoculated in the media with pear roots. Effects on plant growth, root morphology, mineral nutrient accumulation, metabolite composition and abundance, and gene expression were analyzed. Results: AMF treatment significantly increased growth performance, and altered root morphology and mineral nutrient accumulation in this study, with the S treatment displaying overall better performance. In addition, indigenous AMF and commercial AMF isolates displayed common and divergent responses on metabolite and gene expression in pear roots. Compared with CK, most types of flavones, isoflavones, and carbohydrates decreased in the AMF treatment, whereas most types of fatty acids, amino acids, glycerolipids, and glycerophospholipids increased in response to the AMF treatments. Further, the relative abundance of amino acids, flavonoids and carbohydrates displayed different trends between indigenous and commercial AMF isolates. The Fm and S treatments altered gene expression in relation to root metabolism resulting in enriched fructose and mannose metabolism (ko00051), fatty acid biosynthesis (ko00061) and flavonoid biosynthesis (ko00941). Conclusions: This study demonstrates that indigenous AMF and commercial AMF isolates elicited different effects in pear plants through divergent responses from gene transcription to metabolite accumulation.

9.
J Biol Chem ; 285(48): 37281-92, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20870712

RESUMEN

The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Biblioteca de Péptidos , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Biblioteca de Genes , Técnicas Genéticas , Datos de Secuencia Molecular , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Especificidad por Sustrato
10.
BMC Biotechnol ; 11: 16, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21329494

RESUMEN

BACKGROUND: Coeliac disease (CD) is a common and complex disorder of the small intestine caused by intolerance to wheat gluten and related edible cereals like barley and rye. Peptides originating from incomplete gliadin digestion activate the lamina propria infiltrating T cells to release proinflammatory cytokines, which in turn cause profound tissue remodelling of the small intestinal wall. There is no cure for CD except refraining from consuming gluten-containing products. RESULTS: Phage from a random oligomer display library were enriched by repeated pannings against immobilised gliadin proteins. Phage from the final panning round were plated, individual plaques picked, incubated with host bacteria, amplified to a population size of 1011 to 1012 and purified. DNA was isolated from 1000 purified phage populations and the region covering the 36 bp oligonucleotide insert from which the displayed peptides were translated, was sequenced. Altogether more than 150 different peptide-encoding sequences were identified, many of which were repeatedly isolated under various experimental conditions. Amplified phage populations, each expressing a single peptide, were tested first in pools and then one by one for their ability to inhibit binding of human anti-gliadin antibodies in ELISA assays. These experiments showed that several of the different peptide-expressing phage tested inhibited the interaction between gliadin and anti-gliadin antibodies. Finally, four different peptide-encoding sequences were selected for further analysis, and the corresponding 12-mer peptides were synthesised in vitro. By ELISA assays it was demonstrated that several of the peptides inhibited the interaction between gliadin molecules and serum anti-gliadin antibodies. Moreover, ELISA competition experiments as well as dot-blot and western blot revealed that the different peptides interacted with different molecular sites of gliadin. CONCLUSIONS: We believe that several of the isolated and characterised gliadin-binding peptides described here could provide valuable tools for researchers in the field of CD by facilitating studies on localisation and uptake of various gliadin peptides in the small intestine. In future work, the potential of these peptides to detoxify gluten will be investigated.


Asunto(s)
Enfermedad Celíaca/metabolismo , Gliadina/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Enfermedad Celíaca/inmunología , Gliadina/genética , Gliadina/inmunología , Humanos , Péptidos/genética , Péptidos/inmunología , Unión Proteica
11.
Biotechnol Appl Biochem ; 58(3): 190-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21679243

RESUMEN

Celiac disease is caused by an inappropriate immune response to incompletely digested gluten proteins. We investigated whether synthetic peptides with high affinity to wheat gliadin could be selected with a phage display technique and whether complexes between such peptides and gliadin could sustain gastric and pancreatic digestion. Two synthetic peptides, P61 and P64, were selected because of their high affinity to immobilized gliadin. They were allowed to form complexes with gliadin, whereafter the complexes were subjected to in vitro digestion with gastric and pancreatic enzymes. The digestion products were analyzed with Western blot and RP HPLC. The results showed that both peptides formed stable complexes with intact gliadin and that complexes between gliadin and peptide P64 partly resisted gastrointestinal digestion. The two peptides reduced the binding of serum anti-gliadin IgA antibodies by 12%, and 11.5%, respectively, and the binding of anti-gliadin antibodies of the IgG isotype by 13% and 10%. Thus peptides produced by a phage display technique could interact stably with gliadin partly masking epitopes for antibody binding. A combination of peptides of this kind may be used to block gliadin-immune system interactions.


Asunto(s)
Sistema Digestivo/enzimología , Sistema Digestivo/metabolismo , Gliadina/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Animales , Afinidad de Anticuerpos/efectos de los fármacos , Afinidad de Anticuerpos/inmunología , Reacciones Antígeno-Anticuerpo/efectos de los fármacos , Reacciones Antígeno-Anticuerpo/inmunología , Sitios de Unión de Anticuerpos/efectos de los fármacos , Sitios de Unión de Anticuerpos/inmunología , Biotecnología , Western Blotting , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Epítopos/efectos de los fármacos , Epítopos/inmunología , Gliadina/química , Gliadina/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Péptidos/química , Péptidos/farmacología , Porcinos
13.
BMC Plant Biol ; 10: 86, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20459868

RESUMEN

BACKGROUND: Oat, Avena sativa is the sixth most important cereal in the world. Presently oat is mostly used as feed for animals. However, oat also has special properties that make it beneficial for human consumption and has seen a growing importance as a food crop in recent decades. Increased demand for novel oat products has also put pressure on oat breeders to produce new oat varieties with specific properties such as increased or improved beta-glucan-, antioxidant- and omega-3 fatty acid levels, as well as modified starch and protein content. To facilitate this development we have produced a TILLING (Targeting Induced Local Lesions IN Genomes) population of the spring oat cultivar SW Belinda. RESULTS: Here a population of 2600 mutagenised M2 lines, producing 2550 M3 seed lots were obtained. The M2 population was initially evaluated by visual inspection and a number of different phenotypes were seen ranging from dwarfs to giants, early flowering to late flowering, leaf morphology and chlorosis. Phloroglucinol/HCl staining of M3 seeds, obtained from 1824 different M2 lines, revealed a number of potential lignin mutants. These were later confirmed by quantitative analysis. Genomic DNA was prepared from the M2 population and the mutation frequency was determined. The estimated mutation frequency was one mutation per 20 kb by RAPD-PCR fingerprinting, one mutation per 38 kb by MALDI-TOF analysis and one mutation per 22.4 kb by DNA sequencing. Thus, the overall mutation frequency in the population is estimated to be one mutation per 20-40 kb, depending on if the method used addressed the whole genome or specific genes. During the investigation, 6 different mutations in the phenylalanine ammonia-lyase (AsPAL1) gene and 10 different mutations in the cellulose synthase-like (AsCslF6) beta-glucan biosynthesis gene were identified. CONCLUSION: The oat TILLING population produced in this work carries, on average, hundreds of mutations in every individual gene in the genome. It will therefore be an important resource in the development of oat with specific characters. The population (M5) will be available for academic research via Nordgen http://www.nordgen.org as soon as enough seeds are obtained.[Genbank accession number for the cloned AsPAL1 is GQ373155 and GQ379900 for AsCslF6].


Asunto(s)
Avena/genética , Genes de Plantas/genética , Genética de Población , Lignina/biosíntesis , Mutagénesis/genética , Mutación/genética , beta-Glucanos/metabolismo , Avena/efectos de los fármacos , Secuencia de Bases , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Clonación Molecular , Metanosulfonato de Etilo/toxicidad , Pruebas Genéticas , Datos de Secuencia Molecular , Mutagénesis/efectos de los fármacos , Fenotipo , Floroglucinol/metabolismo , Reacción en Cadena de la Polimerasa , Técnica del ADN Polimorfo Amplificado Aleatorio , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Zhong Yao Cai ; 29(4): 311-3, 2006 Apr.
Artículo en Zh | MEDLINE | ID: mdl-16913480

RESUMEN

RAPD (Random Amolified Polymorphism DNA) was employed to detect molecular markers linked to sex in S. grosvenorii by BSA (Bulked Segregant Analysis). 18 RAPD markers linked to sex were selected in BSA by screening 90 primers. Only the marker amplified by S1431 was present in all 8 male individuals tested while absent from all 8 female individuals tested. It showed that S1431 was a male RAPD marker linked to sex.


Asunto(s)
Cucurbitaceae/genética , Plantas Medicinales/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , ADN de Plantas/genética , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Datos de Secuencia Molecular
15.
J Agric Food Chem ; 57(21): 10150-5, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19813732

RESUMEN

Tissue transglutaminase (tTG) plays an important role in celiac disease pathology as it catalyzes deamidation and cross-linking of specific gluten peptides and converts them into potent epitopes recognized by intestinal T-cells. We investigated whether synthetic peptides with high affinity to gliadin could alter tTG activity on gliadin and whole gluten digest. The immobilized substrates were incubated with synthetic peptides identified by the phage display technique and a control peptide with no affinity to gliadin. Transglutaminase activity was measured with time resolved fluorescence. The mean tTG activity, compared to that of the control without the peptides, was reduced by 31, 33, and 36% for three selected gliadin-binding peptides, and 30% for the peptide pool (P < or = 0.001-0.004) when gliadin was the substrate. Finally, substrate specificity experiments suggested that avenin was processed in a manner similar that used for gliadin during in vitro assays with tTG. The results showed that the blocking peptides efficiently reduced tTG processing of gliadin in vitro, and this strategy will be further investigated as an alternative therapy for celiac disease.


Asunto(s)
Inhibidores Enzimáticos/química , Gliadina/química , Péptidos/química , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/química , Secuencia de Aminoácidos , Animales , Inhibidores Enzimáticos/síntesis química , Cobayas , Datos de Secuencia Molecular , Péptidos/síntesis química , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA