Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(18): 5048-5063.e25, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106863

RESUMEN

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.


Asunto(s)
Actomiosina , ARN Mensajero , Proteínas de Unión al ARN , Transducción de Señal , Proteína de Unión al GTP rhoA , Humanos , Actomiosina/metabolismo , Citoplasma/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Proteína de Unión al GTP rhoA/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
2.
Mol Cell ; 83(24): 4509-4523.e11, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134885

RESUMEN

The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.


Asunto(s)
Retículo Endoplásmico , Proteínas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Citosol/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transporte de Proteínas , Biosíntesis de Proteínas
3.
RNA ; 28(1): 76-87, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706978

RESUMEN

Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.


Asunto(s)
Condensados Biomoleculares/química , Chaperonas Moleculares/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Sitios de Unión , Condensados Biomoleculares/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Eucariontes , Células Eucariotas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
4.
Proteomics ; 23(12): e2200281, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843329

RESUMEN

Target identification by modification-free proteomic approaches can potentially reveal the pharmacological mechanism of small molecular compounds. By combining the recent solvent-induced protein precipitation (SIP) method with TMT-labeling quantitative proteomics, we propose solvent-induced proteome profiling (SIPP) approach to identify small molecule-protein interactions. The SIPP approach enables to depict denaturation curves of the target protein by varying concentrations of organic solvents to induce unfolding and precipitation of the cellular proteome. By using this approach, we have successfully identified the known targets of market drugs and natural products and extended the proteome information of SIP for target identification.


Asunto(s)
Proteoma , Proteómica , Solventes , Espectrometría de Masas
5.
Microb Cell Fact ; 22(1): 93, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143012

RESUMEN

BACKGROUND: Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS: Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION: Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.


Asunto(s)
Prolil Oligopeptidasas , Trichoderma , Prolil Oligopeptidasas/metabolismo , Aspergillus niger/metabolismo , Cerveza , Celulosa/metabolismo , Fermentación , Trichoderma/metabolismo
6.
Microb Cell Fact ; 21(1): 76, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525939

RESUMEN

BACKGROUND: Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. RESULTS: Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. CONCLUSIONS: Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG.


Asunto(s)
Ergotioneína , Vías Biosintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Histidina/genética , Ingeniería Metabólica
7.
BMC Plant Biol ; 19(1): 266, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221095

RESUMEN

BACKGROUND: Pogostemon cablin (Blanco) Benth. (Patchouli) is an important aromatic and medicinal plant and widely used in traditional Chinese medicine as well as in the perfume industry. Patchoulol is the primary bioactive component in P. cablin, its biosynthesis has attracted widespread interests. Previous studies have surveyed the putative genes involved in patchoulol biosynthesis using next-generation sequencing method; however, technical limitations generated by short-read sequencing restrict the yield of full-length genes. Additionally, little is known about the expression pattern of genes especially patchoulol biosynthesis related genes in response to methyl jasmonate (MeJA). Our understanding of patchoulol biosynthetic pathway still remained largely incomplete to date. RESULTS: In this study, we analyzed the morphological character and volatile chemical compounds of P. cablin cv. 'Zhanxiang', and 39 volatile chemical components were detected in the patchouli leaf using GC-MS, most of which were sesquiterpenes. Furthermore, high-quality RNA isolated from leaves and stems of P. cablin were used to generate the first full-length transcriptome of P. cablin using PacBio isoform sequencing (Iso-Seq). In total, 9.7 Gb clean data and 82,335 full-length UniTransModels were captured. 102 transcripts were annotated as 16 encoding enzymes involved in patchouli alcohol biosynthesis. Accorded with the uptrend of patchoulol content, the vast majority of genes related to the patchoulol biosynthesis were up-regulated after MeJA treatment, indicating that MeJA led to an increasing synthesis of patchoulol through activating the expression level of genes involved in biosynthesis pathway of patchoulol. Moreover, expression pattern analysis also revealed that transcription factors participated in JA regulation of patchoulol biosynthesis were differentially expressed. CONCLUSIONS: The current study comprehensively reported the morphological specificity, volatile chemical compositions and transcriptome characterization of the Chinese-cultivated P. cablin cv. 'Zhanxiang', these results contribute to our better understanding of the physiological and molecular features of patchouli, especially the molecular mechanism of biosynthesis of patchoulol. Our full-length transcriptome data also provides a valuable genetic resource for further studies in patchouli.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pogostemon/genética , Sesquiterpenos/metabolismo , Acetatos , Vías Biosintéticas , Ciclopentanos , Perfilación de la Expresión Génica , Oxilipinas , Transcriptoma
8.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801204

RESUMEN

The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the jasmonic acid (JA) signaling pathways of plants, and these proteins have been reported to play key roles in plant secondary metabolism mediated by JA. In this study, we firstly isolated one JAZ from P. cablin, PatJAZ6, which was characterized and revealed based on multiple alignments and a phylogenic tree analysis. The result of subcellular localization indicated that the PatJAZ6 protein was located in the nucleus of plant protoplasts. The expression level of PatJAZ6 was significantly induced by the methyl jasmonate (MeJA). Furthermore, by means of yeast two-hybrid screening, we identified two transcription factors that interact with the PatJAZ6, the PatMYC2b1 and PatMYC2b2. Virus-induced gene silencing (VIGS) of PatJAZ6 caused a decrease in expression abundance, resulting in a significant increase in the accumulation of patchouli alcohol. Moreover, we overexpressed PatJAZ6 in P. cablin, which down-regulated the patchoulol synthase expression, and then suppressed the biosynthesis of patchouli alcohol. The results demonstrate that PatJAZ6 probably acts as a repressor in the regulation of patchouli alcohol biosynthesis, contributed to a model proposed for the potential JA signaling pathway in P. cablin.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pogostemon/genética , Proteínas Represoras/genética , Sesquiterpenos/metabolismo , Acetatos/farmacología , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Silenciador del Gen , Isomerasas/genética , Isomerasas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Pogostemon/clasificación , Pogostemon/efectos de los fármacos , Pogostemon/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
Zhongguo Zhong Yao Za Zhi ; 43(12): 2503-2508, 2018 Jun.
Artículo en Zh | MEDLINE | ID: mdl-29950067

RESUMEN

To study the SSR loci information and develop molecular markers, a total of 43 683 Unigenes in transcriptome of Andrographis paniculata were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MicroSAtellite software, SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 14 135 SSR loci were found in the transcriptome of A. paniculata, which distributed in 9 973 Unigenes with a distribution frequency of 32.36%. Di-nucleotide and Tri-nucleotide repeat were the main types, accounted for 75.54% of all SSRs. The repeat motifs of AT/AT and CCG/CGG were the predominant repeat types of Di-nucleotide and Tri-nucleotide, respectively. A total of 4 740 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. Ten pairs of primers in 20 pairs of randomly picked primers produced fragments with expected molecular size. The gene function of Unigenes containing SSR were mostly related to the basic metabolism function of A. paniculata. The SSR markers in transcriptome of A. paniculata show rich type, strong specificity and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding.


Asunto(s)
Andrographis/genética , Repeticiones de Microsatélite , Transcriptoma , Cartilla de ADN , Polimorfismo Genético
10.
Biochem Biophys Res Commun ; 459(2): 184-188, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25534854

RESUMEN

Trichoderma reesei is thought to be a promising recombinant host for the production and secretion of complex proteins due to its ability to secrete large amounts of proteins. In this study we identified a functional N-acetyl-ß-glucosaminidase (NAGase) gene Nag1 in T. reesei. Nag1, a putative gene encoding a GH 20 family NAGase in T. reesei, was cloned and homologous overexpressed in the T. reesei RutC30ΔU3 with a strong cellobiohydrolase1 gene (cbh1) promoter. Nag1 was secreted in its active form and the highest expression level was around 499.85IU/ml. Nag1 has a molecular mass of 80kDa. The optimum pH and temperature were 4.0 and 60°C, respectively.


Asunto(s)
Acetilglucosaminidasa/genética , Acetilglucosaminidasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Trichoderma/enzimología , Trichoderma/genética , Acetilglucosaminidasa/química , Secuencia de Aminoácidos , Clonación Molecular , Proteínas Fúngicas/química , Genes Fúngicos , Concentración de Iones de Hidrógeno , Microbiología Industrial , Datos de Secuencia Molecular , Peso Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA