Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Sci Food Agric ; 104(7): 4268-4277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294081

RESUMEN

BACKGROUND: Crop recognition is the basis of intelligent agricultural machine operations. Visual perception methods have achieved high recognition accuracy. However, the reliability of such methods is difficult to guarantee because of the complex environment of paddy fields. Tactile sensing methods are not affected by background or environmental interference, and have high reliability. However, in an ideal environment, the recognition accuracy is not as high as that of the visual method. RESULTS: To balance the accuracy and reliability of rice plant recognition, a combined visual-tactile method was proposed in this study. A rice plant recognition device was developed with a poly(vinylidene fluoride) sensor embedded inside the device as a tactile perceptron and a graphic designed as a visual perceptron. The primary role of the tactile perceptron is to initially recognize rice plants and provide a time point for image capture for visual perception. The main role of the visual perceptron is to extract features from the captured images and recognize rice plants again. The results of tactile and visual recognition were eventually fused to achieve accurate recognition of rice plants. CONCLUSION: The contact speed between the recognition perceptron and rice-weed was selected for the field performance test based on the real situation of paddy field operation. The results showed that the accuracy and reliability of rice plant recognition decreased as the travelling speed of the paddy field operation machine increased. The results of this study provide a basis for intelligent farm machinery operations in rice fields. © 2024 Society of Chemical Industry.


Asunto(s)
Oryza , Reproducibilidad de los Resultados , Agricultura , Redes Neurales de la Computación , Granjas
2.
J Sci Food Agric ; 102(15): 7343-7352, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35765972

RESUMEN

BACKGROUND: In the past decades, ever-increasing fertilizer use has led to a continuous increase in agricultural output. However, serious waste of resources occurs because of the low utilization of fertilizers. Polyaspartic acid (PASP) is a biodegradable polymer that can be used as a fertilizer synergist in agricultural production to improve the nutrient utilization capacity of plants. For polymers, the molecular weight (MW) often affects their effectiveness. However, little information is available on the effects of PASP MW in agriculture, especially on nitrogen leaching and plant element uptake. RESULTS: This work was conducted to identify the effect of PASPs with three different MWs - PASP-1 (MW: 5517), PASP-2 (MW: 6934), and PASP-3 (MW: 7568) - on nitrogen leaching, lettuce growth, and wheat cultivation. The results revealed that PASP favored plant growth and nitrogen accumulation in the soil, independent of crop species. PASP with a higher MW improved yields and the agronomic characteristics of lettuce and wheat. Furthermore, apparent amelioration of nitrogen use efficiency for lettuce (7.6%, 12.8%, and 15.0%) and wheat (4.6%, 8.1%, and 9.2%) was observed in the treatments with PASP addition. The effects and merits of PASPs on preventing ammonium nitrogen leaching and improving lettuce and wheat productivity were as follows: PASP-3 > PASP-2 > PASP-1. CONCLUSION: The MW of PASP is an essential factor affecting inorganic nitrogen leaching and crop productivity, and PASP with a higher MW (7568) is recommended for application in agriculture. © 2022 Society of Chemical Industry.


Asunto(s)
Fertilizantes , Nitrógeno , Agricultura/métodos , Peso Molecular , Nitrógeno/análisis , Suelo/química , Triticum
3.
Opt Express ; 27(6): 8745-8755, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052687

RESUMEN

We report the generation of mid-infrared (~2 µm) high repetition rate (MHz) sub-100 ns pulses in buried thulium-doped monoclinic double tungstate crystalline waveguide lasers using two-dimensional saturable absorber materials, graphene and MoS2. The waveguide (propagation losses of ~1 dB/cm) was micro-fabricated by means of ultrafast femtosecond laser writing. In the continuous-wave regime, the waveguide laser generated 247 mW at 1849.6 nm with a slope efficiency of 48.7%. The laser operated at the fundamental transverse mode with a linearly polarized output. With graphene as a saturable absorber, the pulse characteristics were 88 ns / 18 nJ (duration / energy) at a repetition rate of 1.39 MHz. Even shorter pulses of 66 ns were achieved with MoS2. Graphene and MoS2 are therefore promising for high repetition rate nanosecond Q-switched infrared waveguide lasers.

4.
Opt Lett ; 42(3): 547-550, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146524

RESUMEN

Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoS2, it can be proposed that MoS2 has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoS2 in the visible range, broadband atomic-layer MoS2 optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoS2 optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.

5.
Opt Express ; 23(5): 5607-13, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836793

RESUMEN

Passively Q-switched nanosecond pulsed erbium-doped fiber laser based on MoS(2) saturable absorber (SA) is experimentally demonstrated. The high quality MoS(2) SA deposited on the broadband high-reflectivity mirror with a large modulation depth of 9% was prepared by pulsed laser deposition method. By inserting the MoS(2) SA into an erbium-doped fiber laser, stable Q-switched operation can be achieved with the shortest pulse width of 660 ns, the maximum pulse energy up to 152 nJ and pulse repetition rates varying from 116 to 131 kHz. The experimental results further verify that MoS(2) possesses the potential advantage for stable Q-switched pulse generation at 1.5 µm.

6.
Nanotechnology ; 25(7): 075202, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24451997

RESUMEN

Nano-branched TiO2 arrays were fabricated on fluorine-doped tin oxide (FTO) glass by a facile two-step chemical synthesis process. Self-powered UV photodetectors based on photoelectrochemical cells (PECs) were assembled using these TiO2 nano-branched arrays as photoanodes. These visible-blind self-powered UV photodetectors exhibit high sensitivity and high-speed photoresponse. Compared with photodetectors based on bare TiO2 nanorod arrays, TiO2 nano-branched arrays show drastically improved photodetecting performance as photoanodes. The photosensitivity increases from 0.03 to 0.22 A W(-1) when optimized nano-branched TiO2 arrays are used, corresponding to an incident photon-to-current conversion efficiency higher than 77%. The UV photodetectors also exhibit excellent spectral selectivity and fast response (0.05 s decay time). The improved performance is attributed to a markedly enlarged TiO2/electrolyte contact area and good electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunk.

7.
Adv Mater ; 36(13): e2310248, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118456

RESUMEN

Metal halide perovskite films have gained significant attention because of their remarkable optoelectronic performances. However, their poor stability upon the severe environment appears to be one of the main facets that impedes their further commercial applications. Herein, a method to improve the stability of flexible photodetectors under water and humidity environment without encapsulation is reported. The devices are fabricated using the physical vapor deposition method (Pulse Laser Deposition & Thermal Evaporation) under high-vacuum conditions. An amorphous organic Rubrene film with low molecular polarity and high elastic modulus serves as both a protective layer and hole transport layer. After immersed in water for 6000 min, the photoluminescence intensity attenuation of films only decreased by a maximum of 10%. The demonstrator device, based on Rubrene/CsPbBr3/ZnO heterojunction confirms that the strategy not only enhances device moisture and mechanical stability but also achieves high sensitivity in optoelectronic detection. In self-powered mode, it has a fast response time of 79.4 µs /207.6 µs and a responsivity 124 mA W-1. Additionally, the absence of encapsulation simplifies the fabrication of complex electrodes, making it suitable for various applications. This study highlights the potential use of amorphous organic films in improving the stability of perovskite-based flexible devices.

8.
Adv Mater ; 35(2): e2208275, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36268544

RESUMEN

Controllable manipulation of specific spin configurations of magnetic materials is the key to constructing functional spintronic devices. Here, it is demonstrated by integrating the merits of ferromagnetic, ferrimagnetic, and antiferromagnetic spin configurations into one synthetic antiferromagnetic (SAF) heterostructure by controlling both long-range oscillatory interlayer coupling and neighboring ferrimagnetic coupling. A controllable manipulation of four types of spin configurations of the Pt/[Co/Pt/Co]/Ru/CoTb SAF heterostructures composed of ferromagnetic Co/Pt/Co and ferrimagnetic CoTb layers is successfully achieved. In particular, the compensated magnetization, enhanced anomalous Hall resistance in the remanence state, wide-temperature spin-orbit torque switching of magnetization, and high immunity to the external magnetic field are simultaneously obtained in one of the SAF heterojunctions with macroscopic interlayer antiferromagnetic coupling. This design concept of engineering spin configurations may enable efficient spin manipulation for customized memory and logic applications.

9.
Adv Mater ; 35(8): e2207353, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36479745

RESUMEN

Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO2 multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO2 and Fe/TiO2 multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO2 underlines its potential in a voltage-driven ON-OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO2 interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO2 surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.

10.
ACS Nano ; 16(4): 6878-6885, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35349269

RESUMEN

Controllable spin-orbit torque based nonvolatile memory is highly desired for constructing energy efficient reconfigurable logic-in-memory computing suitable for emerging data-intensive applications. Here, we report our exploration of the IrMn/Co/Ru/CoPt/CoO heterojunction as a potential candidate for applications in both multistate memory and programmable spin logic. The studied heterojunction can be programmed into four different magnetic configurations at will by tuning both the in-plane exchange bias at the interface of IrMn and Co layers and the out-of-plane exchange bias at the interface of CoPt and CoO layers. Moreover, on the basis of the controllable exchange bias effect, 10 states of nonvolatile memory and multiple logic-in-memory functions have been demonstrated. Our findings indicate that IrMn/Co/Ru/CoPt/CoO multilayered structures can be used as a building block for next-generation logic-in-memory and multifunctional multidimensional spintronic devices.

11.
RSC Adv ; 12(28): 17706-17714, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35765332

RESUMEN

Two-dimensional (2D) layered materials have attracted intensive attention in recent years due to their rich physical properties, and shown great promise due to their low power consumption and high integration density in integrated electronics. However, mostly limited to mechanical exfoliation, large scale preparation of the 2D materials for application is still challenging. Herein, quasi-2D α-molybdenum oxide (α-MoO3) thin film with an area larger than 100 cm2 was fabricated by magnetron sputtering, which is compatible with modern semiconductor industry. An all-solid-state synaptic transistor based on this α-MoO3 thin film is designed and fabricated. Interestingly, by proton intercalation/deintercalation, the α-MoO3 channel shows a reversible conductance modulation of about four orders. Several indispensable synaptic behaviors, such as potentiation/depression and short-term/long-term plasticity, are successfully demonstrated in this synaptic device. In addition, multilevel data storage has been achieved. Supervised pattern recognition with high recognition accuracy is demonstrated in a three-layer artificial neural network constructed on this α-MoO3 based synaptic transistor. This work can pave the way for large scale production of the α-MoO3 thin film for practical application in intelligent devices.

12.
ACS Appl Mater Interfaces ; 14(35): 40093-40101, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35833831

RESUMEN

Halide perovskites (HPs) with marvelous optical and electrical properties are regarded as one of the competitive candidates for building next-generation photodetectors (PDs). However, combining their excellent properties with satisfactory long-term robustness is still challenging, ultimately limiting the practical applications of HP-based PDs. Herein, a high vacuum deposition system is employed to fabricate flexible self-powered PDs with a ZnO/CsPbBr3/γ-CuI structure, which shows excellent stability and outstanding performance in weak light detection. Benefiting from the improved crystallinity and optimized device structure, a high detectivity of 8.1 × 1013 Jones and a rapid response speed (rise/decay time of 3.9/1.8 µs) are obtained in this self-powered device. Furthermore, the unencapsulated device exhibits intriguing environmental stability and mechanical flexibility. The photocurrent remains unchanged after 7000 s of continuous operation or 100 bending cycles. Furthermore, a 15 × 15 PD array is fabricated as an image sensor. A high contrast image of the target object can be obtained owing to the high sensitivity and uniformity of the self-powered PDs. These results demonstrate the feasibility and practicality of the ZnO/CsPbBr3/γ-CuI heterojunction for applications in weak light detection and image formation.

13.
J Comput Chem ; 32(7): 1298-302, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21425287

RESUMEN

First-principles calculations of undoped HfO(2) and cobalt-doped HfO(2) have been carried out to study the magnetic properties of the dielectric material. In contrast to previous reports, it was found that the native defects in HfO(2) could not induce strong ferromagnetism. However, the cobalt substituting hafnium is the most stable defect under oxidation condition, and the ferromagnetic (FM) coupling between the cobalt substitutions is favorable in various configurations. We found that the FM coupling is mediated by the threefold-coordinated oxygen atoms in monoclinic HfO(2) and could be further enhanced in electron-rich condition.


Asunto(s)
Cobalto/química , Hafnio/química , Magnetismo , Óxidos/química , Teoría Cuántica , Termodinámica
14.
Nat Commun ; 12(1): 2473, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931644

RESUMEN

Programmable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current in itself. Here, we demonstrate a repeatable bulk spin-orbit torque (SOT) switching of the perpendicularly magnetized CoPt alloy single-layer films by introducing a composition gradient in the thickness direction to break the inversion symmetry. Experimental results reveal that the bulk SOT-induced effective field on the domain walls leads to the domain walls motion and magnetization switching. Moreover, magnetic field-free perpendicular magnetization switching caused by SOT and its switching polarity (clockwise or counterclockwise) can be reversibly controlled in the IrMn/Co/Ru/CoPt heterojunctions based on the exchange bias and interlayer exchange coupling. This unique composition gradient approach accompanied with electrically controllable SOT magnetization switching provides a promising strategy to access energy-efficient control of memory and logic devices.

15.
ACS Appl Mater Interfaces ; 12(6): 7351-7357, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31958008

RESUMEN

Two-dimensional (2D) materials have exotic intrinsic electronic band structures and are considered as revolutionary foundations for novel nanodevices. Band engineering of 2D materials may pave a new avenue to overcome numerous challenges in modern technologies, such as room temperature (RT) photodetection of light with photon energy below their band gaps. Here, we reported the pioneering RT MoS2-based photodetection in the terahertz (THz) region via introducing Mo4+ and S2- vacancies for rational band gap engineering. Both the generation and transport of extra carriers, driven by THz electromagnetic radiations, were regulated by the vacancy concentration as well as the resistivity of MoS2 samples. Utilizing the balance between the carrier concentration fluctuation and carrier-scattering probability, a high RT photoresponsivity of 10 mA/W at 2.52 THz was realized in an Mo-vacancy-rich MoS2.19 sample. This work overcomes the challenge in the excessive dark current of RT THz detection and offers a convenient way for further optoelectronic and photonic devices based on band gap-engineered 2D materials.

16.
Sci Bull (Beijing) ; 65(20): 1718-1725, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659244

RESUMEN

Material functionalities strongly depend on the stoichiometry, crystal structure, and homogeneity. Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature. In order to verify the origin of the ferromagnetism, we employed a series of structural, chemical, and electronic state characterizations. Combined with electron microscopy and transport measurements, synchrotron-based grazing incident wide angle X-ray scattering, soft X-ray absorption and circular dichroism clearly reveal that the room-temperature ferromagnetism originates from the In0.23Co0.77O1-v amorphous phase with a large tunable range of oxygen vacancies. The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3, with the evolving electrical resistivity from 5 × 103 µΩ cm to above 2.5 × 105 µΩ cm. Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies, driving the system towards non-ferromagnetism and insulating regime. Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides, which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.

17.
Nanotechnology ; 20(22): 225601, 2009 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-19436087

RESUMEN

Bismuth triiodide, a compound with a layered structure, is utilized to confine the growth of nanowires along the substrate surface in a low-temperature solution-phase reaction. The confinement is attributed to the electrostatic force between the bismuth triiodide sheet and the deposited Cd2+ cations that caused the CdS nanowires to grow within the surface of the bismuth triiodide sheet. As the nanowires grew longer, they began to form a high-yield woven network. Additionally, use of the same reaction system but with a minimized amount of sulfur led to the growth of CdO-CdS necklace-like nanowires. The optical and electric measurements suggest that the photoluminescence and electron field emission properties of these nanostructures are highly affected by their morphologies and chemical compositions.

18.
J Agric Food Chem ; 67(27): 7616-7625, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251044

RESUMEN

Rapid hydrolysis of urea results in further fertilization frequency and excessive nitrogen (N) input. A modified urea, dimethylolurea (DMU), was synthesized in this study. The structure of the sample was characterized by Fourier transform infrared and nuclear magnetic resonance analysis, manifesting the formation of DMU. N release investigation confirmed that DMU enabling provided a gradual N supply. The N leaching experiment indicated that increasing the applied DMU significantly reduced the NH4+-N, NO3--N, and total N leaching, compared with urea application alone. The application effect on maize and wheat was evaluated. The results revealed that singly applied DMU with 100% or 80% N input, irrespective of the amount, promoted crop yield and agronomic characteristic and N use efficiency (NUE) of maize and wheat, beyond urea with two split applications at the recommended rate. Thus, the potential availability of DMU was proven; this could be widely used in agricultural fields as a slow-release fertilizer.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Fertilizantes , Compuestos de Metilurea/administración & dosificación , Nitrógeno/administración & dosificación , Agricultura/métodos , Preparaciones de Acción Retardada , Fertilizantes/análisis , Compuestos de Metilurea/síntesis química , Compuestos de Metilurea/química , Espectroscopía Infrarroja por Transformada de Fourier , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
19.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 2): o391, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-21201421

RESUMEN

The complete mol-ecule of the title compound, C(11)H(14)N(2)O, is generated by crystallographic twofold symmetry, with the C=O group lying on the rotation axis. In the crystal structure, weak C-H⋯N inter-actions form zigzag chains of mol-ecules.

20.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 12): o2418, 2008 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21581386

RESUMEN

The complete molecule of the title compound, C(4)H(8)N(2)O(2), is generated by a crystallographic inversion center. The occurence of N-H⋯O hydrogen bonds results in the formation of a two-dimensional infinite network parallel to the (010) plane. In this plane, the hydrogen bonds define graph-set motif R(4) (4)(22) in a centrosymmetric array by the association of four mol-ecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA