Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 659, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124039

RESUMEN

BACKGROUND: German chamomile (Matricaria chamomilla L.) is an important medicinal plant, and the essential oils in the flowers have various biological activities. Genetic transformation systems are important for plant quality improvement and molecular research. To the best of our knowledge, a genetic transformation system has not yet been reported for German chamomile. RESULTS: In this study, we developed Agrobacterium-mediated transformation protocols for German chamomile callus tissues. This involved optimizing key parameters, such as hygromycin and cefotaxime concentrations, bacterial density, and infection and co-culture durations. We also performed gas chromatography-mass spectrometry analysis to identify volatile compounds in non-transgenic and transgenic callus and hairy root tissues. Furthermore, to compare and verify the callus transformation system of German chamomile, we transferred McFPS to the hairy roots of German chamomile. The results showed that the optimal conditions for Agrobacterium-mediated callus tissue transformation were as follows: explant, petiole; cefotaxime concentration, 300 mg/L; hygromycin concentration, 10 mg/L; and bacterial solution concentration, OD600 = 0.6; callus transformation efficiency was the highest when the co-culture time was 3 days. CONCLUSIONS: Establishment of a high-efficiency callus transformation system will lay the foundation for gene function identification in German chamomile.


Asunto(s)
Matricaria , Aceites Volátiles , Matricaria/genética , Matricaria/química , Aceites Volátiles/análisis , Cinamatos , Cefotaxima , Manzanilla/genética , Manzanilla/química
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675248

RESUMEN

The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.


Asunto(s)
Matricaria , Aceites Volátiles , Sesquiterpenos , Geraniltranstransferasa/genética , Matricaria/química , Factores de Transcripción/genética , Aceites Volátiles/química , Sesquiterpenos/química
3.
Carbohydr Polym ; 327: 121676, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171662

RESUMEN

In this paper, an eco-friendly versatile superabsorbent material was designed for soil improvement, and a synchronous chemical loading strategy was proposed. In this strategy, urea not only acted as fertilizer but also acted as a crosslinker to construct an alginate network. The microstructure, chemical structure, thermal stability and composition of the obtained SA/urea hydrogel were characterized in detail. Adsorption behavior and application performance in agriculture were evaluated. The results demonstrated that urea had two different conformations in the network. The SA/urea hydrogel had abundant pore structures with excellent water absorption performance. It could not only improve the water retention capacity of soil but also release nitrogen, phosphorus and potassium elements with degradation for as long as 9 weeks. Moreover, the hydrogel could promote plant growth, increase the nutritional composition of plants and inhibit the accumulation of harmful nitrate in plants. With advantages, including biodegradability, high water absorption, controllable degradation, excellent water retention, sustained NPK release and improved plant nutrition value, the SA/urea hydrogel has great potential for soil improvement in agriculture as an eco-friendly versatile water retention agent and can be expected to extend to more fields as a novel superabsorbent material.

4.
Int J Biol Macromol ; 261(Pt 2): 129865, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302012

RESUMEN

Due to marvelous sensitivity and flexibility, conductive hydrogels are popularly used as strain sensors in intelligent skin and wearable electronic devices fields. However, hydrogel tends to be destroyed after long-term use or in accident, leading to performance degradation. Herein, we developed an environmental-friendly Ti-containing conductive hydrogel. The hydrogel network was constructed via a simple two-step method with coordination reaction and amidation reaction based on a metal ion precursor from transitional coordination. The synergies of reversible metal coordination bonds and dynamic hydrogen bonds endowed the hydrogel with excellent self-healing properties (3 h, 93.66 %), tensile properties (136.46 kPa), compression properties (1.122 MPa), and anti-fatigue performance. At the same time, the hydrogel showed excellent self-adhesion, even underwater. Due to Ti4+, electrical conductivity of the hydrogel was visibly enhanced (σ = 25.64 mS·cm-1), which resulted in fast response (TS [time sensitivity] = 24.78 s-1) and short recovery time (153 ms). As a flexible strain sensor, the hydrogel with stable conductivity and high sensitivity could precisely detect and distinguish a series of human motions, even different letter pronunciations. These remarkable features make it a promising application in the fields of intelligent skin and wearable electronic devices.


Asunto(s)
Carboximetilcelulosa de Sodio , Hidrogeles , Humanos , Titanio , Conductividad Eléctrica , Enlace de Hidrógeno
5.
Nat Commun ; 12(1): 1581, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707420

RESUMEN

Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Highly distributed synaptic sensory neurons are more readily driven by portable, distributed, and ubiquitous power sources. Here, we report a contact-electrification-activated artificial afferent at femtojoule energy. Upon the contact-electrification effect, the induced triboelectric signals activate the ion-gel-gated MoS2 postsynaptic transistor, endowing the artificial afferent with the adaptive capacity to carry out spatiotemporal recognition/sensation on external stimuli (e.g., displacements, pressures and touch patterns). The decay time of the synaptic device is in the range of sensory memory stage. The energy dissipation of the artificial afferents is significantly reduced to 11.9 fJ per spike. Furthermore, the artificial afferents are demonstrated to be capable of recognizing the spatiotemporal information of touch patterns. This work is of great significance for the construction of next-generation neuromorphic sensory network, self-powered biomimetic electronics and intelligent interactive equipment.

6.
Sci Adv ; 7(12)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33731346

RESUMEN

Developing multifunctional and diversified artificial neural systems to integrate multimodal plasticity, memory, and supervised learning functions is an important task toward the emulation of neuromorphic computation. Here, we present a bioinspired mechano-photonic artificial synapse with synergistic mechanical and optical plasticity. The artificial synapse is composed of an optoelectronic transistor based on graphene/MoS2 heterostructure and an integrated triboelectric nanogenerator. By controlling the charge transfer/exchange in the heterostructure with triboelectric potential, the optoelectronic synaptic behaviors can be readily modulated, including postsynaptic photocurrents, persistent photoconductivity, and photosensitivity. The photonic synaptic plasticity is elaborately investigated under the synergistic effect of mechanical displacement and the light pulses embodying different spatiotemporal information. Furthermore, artificial neural networks are simulated to demonstrate the improved image recognition accuracy up to 92% assisted with mechanical plasticization. The mechano-photonic artificial synapse is highly promising for implementing mixed-modal interaction, emulating complex biological nervous system, and promoting the development of interactive artificial intelligence.

7.
ACS Nano ; 14(7): 8668-8677, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32568513

RESUMEN

Iontronics are effective in modulating electrical properties through the electric double layers (EDLs) assisted with ionic migration/arrangement, which are highly promising for unconventional electronics, ionic sensory devices, and flexible interactive interface. Proton conductors with the smallest and most abundant protons (H+) can realize a faster migration/polarization under electric field to form the EDL with higher capacitance. Here, a versatile triboiontronic MoS2 transistor via proton conductor by sophisticated combination of triboelectric modulation and protons migration has been demonstrated. This device utilizes triboelectric potential originated from mechanical displacement to modulate the electrical properties of transistors via protons migration/accumulation. It shows superior electrical properties, including high current on/off ratio over 106, low cutoff current (∼0.04 pA), and steep switching properties (89 µm/dec). Pioneering noise tests are conducted to the tribotronic devices to exclude the possible noise interference introduced by mechanical displacement. The versatile triboiontronic MoS2 transistor via proton conductor has been utilized for mechanical behavior derived logic devices and an artificial sensory neuron system. This work represents the reliable and effective triboelectric potential modulation on electronic transportation through protonic dielectrics, which is highly desired for theoretical study of tribotronic gating, active mechanosensation, self-powered electronic skin, artificial intelligence, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA