Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214570

RESUMEN

Based on the coupling effect of contact electrification and electrostatic induction, the triboelectric nanogenerator (TENG) as an emerging energy technology can effectively harvest mechanical energy from the ambient environment. However, due to its inherent property of large impedance, the TENG shows high voltage, low current and limited output power, which cannot satisfy the stable power supply requirements of conventional electronics. As the interface unit between the TENG and load devices, the power management circuit can perform significant functions of voltage and impedance conversion for efficient energy supply and storage. Here, a review of the recent progress of switching power management for TENGs is introduced. Firstly, the fundamentals of the TENG are briefly introduced. Secondly, according to the switch types, the existing power management methods are summarized and divided into four categories: travel switch, voltage trigger switch, transistor switch of discrete components and integrated circuit switch. The switch structure and power management principle of each type are reviewed in detail. Finally, the advantages and drawbacks of various switching power management circuits for TENGs are systematically summarized, and the challenges and development of further research are prospected.

2.
Sensors (Basel) ; 22(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35632159

RESUMEN

With the extensive application of wireless sensing nodes, the demand for sustainable energy in unattended environments is increasing. Here, we report a self-powered and autonomous vibrational wake-up system (SAVWS) based on triboelectric nanogenerators and micro-electromechanical system (MEMS) switches. The energy triboelectric nanogenerator (E-TENG) harvests vibration energy to power the wireless transmitter through a MEMS switch. The signal triboelectric nanogenerator (S-TENG) controls the state of the MEMS switch as a self-powered accelerometer and shows good linearity in the acceleration range of 1-4.5 m/s2 at 30 Hz with a sensitivity of about 14.6 V/(m/s2). When the acceleration increases, the S-TENG turns on the MEMS switch, and the wireless transmitter transmits an alarm signal with the energy from E-TENG, using only 0.64 mJ. Using TENGs simultaneously as an energy source and a sensor, the SAVWS provides a self-powered vibration monitoring solution for unattended environments and shows extensive applications and great promise in smart factories, autonomous driving, and the Internet of Things.

3.
Adv Sci (Weinh) ; : e2404253, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864316

RESUMEN

It is an increasingly mature application solution that triboelectric nanogenerator (TENG) supplies power to electronic devices through its power management system (PMS). However, the previous PMS is able to manage a limited voltage magnitude and the energy storage elements are limited to capacitors. This work proposes an ultrahigh voltage PMS (UV-PMS) to realize the charging of commercial lithium cells (LCs) by TENG. The design of UV-PMS enables energy management of TENGs with ultrahigh open-circuit voltages up to 3500 V and boosts the peak charging current from 30.9 µA to 2.77 mA, an increase of 89.64 times. With the introduction of UV-PMS, the effective charging capacity of LC charged by a TENG at a working frequency of 1.5 Hz for 1 h comes to 429.7 µAh, making a 75.3 times enhancement compared to charging by TENG directly. The maximum charging power comes to 1.56 mW. The energy storage efficiency is above 97% and the overall charge efficiency can be maintained at 81.2%. This work provides a reliable strategy for TENG to store energy in LC, and has promising applications in energy storage, LC's life, and self-powered systems.

4.
ACS Appl Mater Interfaces ; 16(23): 30255-30263, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813772

RESUMEN

Recently, discarded electronic products have caused serious environmental pollution and information security issues, which have attracted widespread attention. Here, a degradable tribotronic transistor (DTT) for self-destructing intelligent package e-labels has been developed, integrated by a triboelectric nanogenerator and a protonic field-effect transistor with sodium alginate as a dielectric layer. The triboelectric potential generated by external contact electrification is used as the gate voltage of the organic field-effect transistor, which regulates carrier transport through proton migration/accumulation. The DTT has successfully demonstrated its output characteristics with a high sensitivity of 0.336 mm-1 and a resolution of over 100 µm. Moreover, the DTT can be dissolved in water within 3 min and completely degraded in soil within 12 days, demonstrating its excellent degradation characteristics, which may contribute to environmental protection. Finally, an intelligent package e-label based on the modulation of the DTT is demonstrated, which can display information about the package by a human touch. The e-label will automatically fail due to the degradation of the DTT over time, achieving the purpose of information confidentiality. This work has not only presented a degradable tribotronic transistor for package e-labels but also exhibited bright prospects in military security, information hiding, logistics privacy, and personal affairs.

5.
Materials (Basel) ; 16(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37176381

RESUMEN

Electronic tattoos have great potential application in the biomedical field; moreover, the substrate-free electronic tattoo offers better comfortability and conformal contact. However, the substrate-free electronic tattoo is more prone to malfunction, including fall off and fracture. In this paper, a self-healing and self-adhesive substate-free tattoo based on PEDOT: PSS is studied and reported. The dry composite electrode will turn into self-healing material while it transforms into hydrogel, and a cut with a width up to 24 µm could be healed in 1 s. In terms of adhesion performance, the substrate-free electrode can hang a 28.2 g weight by a contact area of 8 mm × 8 mm. Additionally, the substate-free electrode could maintain fully conformal contact with porcine skin in 15 days by its self-adhesiveness. When applied as a substrate-free tattoo, the contact impedance and ECG signal measurement performance before and after self-healing are almost the same. At a frequency of 10 Hz, the contact impedance of the undamaged electrode, healed electrode, and Ag/AgCl gel electrode are 32.2 kΩ, 39.2 kΩ, and 62.9 kΩ, respectively. In addition, the ECG signals measured by the undamaged electrode and healed electrode are comparable to that of Ag/AgCl electrode. The self-healing and self-adhesive substrate-free tattoo electrode reported here has broad application in health monitoring.

6.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985030

RESUMEN

Electrohydrodynamic jet (E-jet) printing has broad application prospects in the preparation of flexible electronics and optical devices. Ejection cycle time and droplet size are two key factors affecting E-jet-printing quality, but due to the complex process of E-jet printing, it remains a challenge to establish accurate relationships among ejection cycle time and droplet diameter and printing parameters. This paper develops a model based on random forest regression (RFR) for E-jet-printing prediction. Trained with 72 groups of experimental data obtained under four printing parameters (voltage, nozzle-to-substrate distance, liquid viscosity, and liquid conductivity), the RFR model achieved a MAPE (mean absolute percent error) of 4.35% and an RMSE (root mean square error) of 0.04 ms for eject cycle prediction, as well as a MAPE of 2.89% and an RMSE of 0.96 µm for droplet diameter prediction. With limited training data, the RFR model achieved the best prediction accuracy among several machine-learning models (RFR, CART, SVR, and ANN). The proposed prediction model provides an efficient and effective way to simultaneously predict the ejection cycle time and droplet diameter, advancing E-jet printing toward the goal of accurate, drop-on-demand printing.

7.
Materials (Basel) ; 15(4)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35208124

RESUMEN

The transient lithium-ion battery is a potential candidate as an integrated energy storage unit in transient electronics. In this study, a mechanically robust, transient, and high-performance composite porous membrane for a transient gel electrolyte in transient lithium-ion batteries is studied and reported. By introducing a unique and controllable circular skeleton of methylcellulose to the carboxymethyl cellulose-based membrane, the elastic modulus and tensile strength of the composite porous membrane (CPM) are greatly improved, while maintaining its micropores structure and fast transiency. Results show that CPM with 5% methylcellulose has the best overall performance. The elastic modulus, tensile strength, porosity, and contact angle of the optimized CPM are 335.18 MPa, 9.73 MPa, 62.26%, and 21.22°, respectively. The water-triggered transient time for CPM is less than 20 min. The ionic conductivity and bulk resistance of the CPM gel electrolyte are 0.54 mS cm-1 and 4.45 Ω, respectively. The obtained results suggest that this transient high-performance CPM has great potential applications as a transient power source in transient electronics.

8.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35334684

RESUMEN

In the microchip electrophoresis with capacitively coupled contactless conductivity detection, the stray capacitance of the detector causes high background noise, which seriously affects the sensitivity and stability of the detection system. To reduce the effect, a novel design of planar grounded capacitively coupled contactless conductivity detector (PG-C4D) based on printed circuit board (PCB) is proposed. The entire circuit plane except the sensing electrodes is covered by the ground electrode, greatly reducing the stray capacitance. The efficacy of the design has been verified by the electrical field simulation and the electrophoresis detection experiments of inorganic ions. The baseline intensity of the PG-C4D was less than 1/6 of that of the traditional C4D. The PG-C4D with the new design also demonstrated a good repeatability of migration time, peak area, and peak height (n = 5, relative standard deviation, RSD ≤ 0.3%, 3%, and 4%, respectively), and good linear coefficients within the range of 0.05-0.75 mM (R2 ≥ 0.986). The detection sensitivity of K+, Na+, and Li+ reached 0.05, 0.1, and 0.1 mM respectively. Those results prove that the new design is an effective and economical approach which can improve sensitivity and repeatability of a PCB based PG-C4D, which indicate a great application potential in agricultural and environmental monitoring.

9.
Biosens Bioelectron ; 206: 114118, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231681

RESUMEN

Electronic tattoo has great potential application in mobile health. Fully conformal contact between E-tattoo and skin is critical for reliable monitoring. In this paper, we reported a substrate-free, ultra-conformable PEDOT: PSS (3,4-ethylenedioxythiophene):poly(styrene-sulfonate) E-tattoo achieved by interface energy regulation on skin. The controllable gel/dry electrode mutual transformation property of PEDOT: PSS was carefully studied and reported. Then a novel transfer approach was studied to transfer thin, substrate-free PEDOT: PSS E-tattoo onto skin. Meanwhile, PEDOT: PSS E-tattoo was gelled, then dried directly on skin, regulating its bending energy, contact area, and interface adhesion energy with skin. Through this method, the critical thickness of the after-transformation dry E-tattoo that could form fully conformal contact with skin was increased by 4 times. The electrode-skin interface impedance and ECG measurement performance of the reported E-tattoo were on par with commercial Ag/AgCl gel electrodes, while offering superior comfort and reliability. The substrate-free, ultra-conformable PEDOT: PSS E-tattoo could be applied as sensing electrode for reliable monitoring in mobile health.


Asunto(s)
Técnicas Biosensibles , Tatuaje , Técnicas Biosensibles/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes , Polímeros , Poliestirenos , Reproducibilidad de los Resultados
10.
Microsyst Nanoeng ; 8: 30, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359613

RESUMEN

Triboelectric nanogenerators (TENGs) can directly harvest energy via solid-liquid interface contact electrification, making them very suitable for harvesting raindrop energy and as active rainfall sensors. This technology is promising for realizing a fully self-powered system for autonomous rainfall monitoring combined with energy harvesting/sensing. Here, we report a raindrop energy-powered autonomous rainfall monitoring and wireless transmission system (R-RMS), in which a raindrop-TENG (R-TENG) array simultaneously serves as a raindrop energy harvester and rainfall sensor. At a rainfall intensity of 71 mm/min, the R-TENG array can generate an average short-circuit current, open-circuit voltage, and maximum output power of 15 µA, 1800 V, and 325 µW, respectively. The collected energy can be adjusted to act as a stable 2.5 V direct-current source for the whole system by a power management circuit. Meanwhile, the R-TENG array acts as a rainfall sensor, in which the output signal can be monitored and the measured data are wirelessly transmitted. Under a rainfall intensity of 71 mm/min, the R-RMS can be continuously powered and autonomously transmit rainfall data once every 4 min. This work has paved the way for raindrop energy-powered wireless hyetometers, which have exhibited broad prospects in unattended weather monitoring, field surveys, and the Internet of Things.

11.
Materials (Basel) ; 13(5)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131433

RESUMEN

In this study, an all-organic, partially transient epidermal sensor with functional poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conjugated polymer printed onto a water-soluble polyethylene oxide (PEO) substrate is studied and presented. The sensor's electronic properties were studied under static stress, dynamic load, and transient status. Electrode resistance remained approximately unchanged for up to 2% strain, and increased gradually within 6.5% strain under static stress. The electronic properties' dependence on dynamic load showed a fast response time in the range of 0.05-3 Hz, and a reversible stretching threshold of 3% strain. A transiency study showed that the PEO substrate dissolved completely in water, while the PEDOT:PSS conjugated polymer electrode remained intact. The substrate-less, intrinsically soft PEDOT:PSS electrode formed perfect contact on human skin and stayed attached by Van der Waals force, and was demonstrated as a tattoolike epidermal sensor.

12.
Materials (Basel) ; 13(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224921

RESUMEN

Transient materials/electronics is an emerging class of technology concerned with materials and devices that are designed to operate over a pre-defined period of time, then undergo controlled degradation when exposed to stimuli. Degradation/transiency rate in solvent-triggered devices is strongly dependent on the chemical composition of the constituents, as well as their interactions with the solvent upon exposure. Such interactions are typically slow, passive, and diffusion-driven. In this study, we are introducing and exploring the integration of gas-forming reactions into transient materials/electronics to achieve expedited and active transiency. The integration of more complex chemical reaction paths to transiency not only expedites the dissolution mechanism but also maintains the pre-transiency stability of the system while under operation. A proof-of-concept transient electronic device, utilizing sodium-bicarbonate/citric-acid pair as gas-forming agents, is demonstrated and studied vs. control devices in the absence of gas-forming agents. While exhibiting enhanced transiency behavior, substrates with gas-forming agents also demonstrated sufficient mechanical properties and physical stability to be used as platforms for electronics.

13.
Materials (Basel) ; 12(1)2018 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-30597959

RESUMEN

Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.

14.
Materials (Basel) ; 10(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28773036

RESUMEN

The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.

15.
Macromol Biosci ; 17(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148617

RESUMEN

Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Nanofibras/química , Polímeros/química , Administración Tópica , Animales , Adhesión Celular , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inyecciones Subcutáneas , Microfluídica/métodos , Polielectrolitos/química , Propiedades de Superficie , Industria Textil/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA