Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 618(7966): 687-697, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344649

RESUMEN

Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.

2.
Phys Rev Lett ; 128(17): 174301, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570460

RESUMEN

Building upon the bulk-boundary correspondence in topological phases of matter, disclinations have recently been harnessed to trap fractionally quantized density of states (DOS) in classical wave systems. While these fractional DOS have associated states localized to the disclination's core, such states are not protected from deconfinement due to the breaking of chiral symmetry, generally leading to resonances which, even in principle, have finite lifetimes and suboptimal confinement. Here, we devise and experimentally validate in acoustic lattices a paradigm by which topological states bind to disclinations without a fractional DOS but which preserve chiral symmetry. The preservation of chiral symmetry pins the states at the midgap, resulting in their protected maximal confinement. The integer DOS at the defect results in twofold degenerate states that, due to symmetry constraints, do not gap out. Our study provides a fresh perspective about the interplay between symmetry protection in topological phases and topological defects, with possible applications in classical and quantum systems alike.

3.
Phys Rev Lett ; 129(8): 084301, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36053695

RESUMEN

Weyl points-topological monopoles of quantized Berry flux-are predicted to spread to Weyl exceptional rings in the presence of non-Hermiticity. Here, we use a one-dimensional Aubry-Andre-Harper model to construct a Weyl semimetal in a three-dimensional parameter space comprising one reciprocal dimension and two synthetic dimensions. The inclusion of non-Hermiticity in the form of gain and loss produces a synthetic Weyl exceptional ring (SWER). The topology of the SWER is characterized by both its topological charge and non-Hermitian winding numbers. We experimentally observe the SWER and synthetic Fermi arc in a one-dimensional phononic crystal with the non-Hermiticity introduced by active acoustic components. Our findings pave the way for studying the high-dimensional non-Hermitian topological physics in acoustics.

4.
Phys Rev Lett ; 127(21): 214302, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860114

RESUMEN

We report a three-dimensional (3D) topological insulator (TI) formed by stacking identical layers of Chern insulators in a hybrid real-synthetic space. By introducing staggered interlayer hopping that respects mirror symmetry, the bulk bands possess an additional Z_{2} topological invariant along the stacking dimension, which, together with the nontrivial Chern numbers, endows the system with a Z×Z_{2} topology. A 4-tuple topological index characterizes the system's bulk bands. Consequently, two distinct types of topological surface modes (TSMs) are found localized on different surfaces. Type-I TSMs are gapless and are protected by Chern numbers, whereas type-II gapped TSMs are protected by Z_{2} bulk polarization in the stacking direction. Remarkably, each type-II TSM band is also topologically nontrivial, giving rise to second-order topological hinge modes (THMs). Both types of TSMs and the THMs are experimentally observed in an elastic metacrystal.

5.
Phys Rev Lett ; 126(5): 054301, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605739

RESUMEN

Topological notions in physics often emerge from adiabatic evolution of states. It not only leads to fundamental insight of topological protection but also provides an important approach for the study of higher-dimensional topological phases. In this work, we first demonstrate the transfer of topological boundary states (TBSs) across the bulk to the opposite boundary in an acoustic waveguide system. By exploring the finite-size induced minigap between two TBS bands, we unveil the quantitative condition for the breakdown of adiabaticity in the system by demonstrating the Landau-Zener transition with both theory and experiments. Our results not only serve as a foundation of future studies of dynamic state transfer but also inspire applications leveraging nonadiabatic transitions as a new degree of freedom.

6.
Hepatol Res ; 51(11): 1139-1152, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34233088

RESUMEN

AIM: As one of the most common and lethal carcinomas, hepatocellular carcinoma (HCC) is a global health concern and affects millions of people worldwide. Current treatments for HCC are very limited due to its unclear pathogenesis. Here, we aim to further investigate the role of circCMTM3/microRNA (miR)-3619-5p in HCC. METHODS: Human blood samples were collected from HCC patients and healthy people. Quantitative reverse transcription-polymerase chain reaction and western blot analysis were undertaken to measure levels of circCMTM3, miR-3619-5p, SOX9, and exosome markers. The MTT, colony formation, and Transwell assays were used to examine the viability, migration, and invasion of human umbilical vein endothelial cells (HUVECs), respectively. Tube formation assay was used to assess angiogenesis. Dual luciferase assay was used to validate circCMTM3/miR-3619-5p and miR-3619-5p/SOX9 interactions. A nude mouse xenograft model was used to test the role of circCMTM3 in HCC in vivo. RESULTS: Levels of circCMTM3 in exosomes from HCC patients and cells were elevated. Knockdown of circCMTM3 greatly decreased viability, migration, and invasion of HUVECs, as well as angiogenesis. CircCMTM3 acted as a miR-3619-5p sponge and miR-3619-5p inhibitor reversed the effects of si-circCMTM3 on angiogenesis. MiR-3619-5p directly targeted SOX9 and modulated angiogenesis through SOX9. Furthermore, knockdown of circCMTM3 suppressed angiogenesis and HCC tumor growth in vivo. CONCLUSION: The exosome circCMTM3/miR-3619-5p/SOX9 axis from HCC cells promotes angiogenesis and thus contributes to HCC tumorigenesis.

7.
Phys Rev Lett ; 124(7): 074501, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142328

RESUMEN

We report the first realization of a three-dimensional (3D) acoustic double-zero-index medium (DZIM) made of a cubic lattice of metal rods. While the past decade has seen several realizations of 2D DZIM, achieving such a medium in 3D has remained an elusive challenge. Here, we show how a fourfold degenerate point with conical dispersion can be induced at the Brillouin zone center, such that the material becomes a 3D DZIM with the effective mass density and compressibility simultaneously acquiring near-zero values. To demonstrate the functionalities of this new medium, we have fabricated an acoustic waveguide of 3D DZIM in form of a "periscope" with two 90° turns and observed tunneling of a normally incident planar wave through the waveguide yielding undistorted planar wave front at the waveguide exit. Our findings establish a practical route to realize 3D DZIM as an effective acoustic "void space" that offers unprecedented control over acoustic wave propagation.

8.
Nat Commun ; 15(1): 1478, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368404

RESUMEN

For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements. Analogy to the concept of stimulated Raman adiabatic passage, amplitudes of the two couplings are modulated as time-delayed Gaussian functions, and the couplings' signs are periodically flipped to eliminate temporal phase mismatching. As a result, robust and complete acoustic energy transfer from A to C is achieved. The non-reciprocal frequency conversion properties of our design are demonstrated. Our research takes a pivotal step towards expanding wave steering through time-dependent modulations and is promising to extend the frequency conversion based on state evolution in various linear Hermitian systems to nonlinear and non-Hermitian regimes.

9.
Sci Bull (Beijing) ; 66(17): 1740-1745, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654381

RESUMEN

The recent discovery and realizations of higher-order topological insulators enrich the fundamental studies on topological phases. Here, we report three-dimensional (3D) wave-steering capabilities enabled by topological boundary states at three different orders in a 3D phononic crystal with nontrivial bulk topology originated from the synergy of mirror symmetry of the unit cell and a non-symmorphic glide symmetry of the lattice. The multitude of topological states brings diverse possibilities of wave manipulations. Through judicious engineering of the boundary modes, we experimentally demonstrate two functionalities at different dimensions: 2D negative refraction of sound wave enabled by a first-order topological surface state with negative dispersion, and a 3D acoustic interferometer leveraging on second-order topological hinge states. Our work showcases that topological modes at different orders promise diverse wave steering applications across different dimensions.

10.
Pancreas ; 50(3): 317-326, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625109

RESUMEN

OBJECTIVES: Pancreatic carcinoma (PC) has become the fourth leading cause of cancer deaths. Long noncoding RNA DUXAP8 has also been reported to play a regulatory role in PC progression. However, its molecular mechanism in PC is not fully elucidated. METHODS: Quantitative real-time polymerase chain reaction was used to detect the levels of DUXAP8, microRNA (miR)-448, Wilms tumor 1-associating protein (WTAP), focal adhesion kinase (Fak), and matrix metallopeptidase 2/9. Western blotting was carried out to detect matrix metallopeptidase 2/9, WTAP, Fak, and p-Fak. The interaction between DUXAP8 and miR-448 as well as WTAP and miR-448 was validated by bioinformatics and dual-luciferase reporter assays. Transwell assay was used to analyze cell invasion and migration. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was used to analyze cell proliferation. RESULTS: DUXAP8 was upregulated, whereas miR-448 was downregulated in PC tissue and cells. Meanwhile, DUXAP8 knockdown or miR-448 overexpression inhibited migration, invasion, and proliferation of PC cells. DUXAP8 directly targeted miR-448, and miR-448 directly bound to WTAP. Downregulation of miR-448 reversed the inhibition of migration and invasion of PC cells by DUXAP8 knockdown. CONCLUSIONS: DUXAP8 sponges miR-448 to modulate migration, invasion, and proliferation of PC cells, indicating a novel mechanistic role of DUXAP8 in the regulation of PC progression.


Asunto(s)
Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Pancreáticas/genética , Factores de Empalme de ARN/genética , ARN Largo no Codificante/genética , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Quinasa 1 de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Invasividad Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Empalme de ARN/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/genética
11.
World J Gastrointest Oncol ; 12(10): 1195-1208, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33133386

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a shortage of effective biomarkers for its diagnosis. AIM: To explore blood exosomal micro ribonucleic acids (miRNAs) as potential biomarkers for HCC diagnosis. RESULTS: The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p. The miRNA profiles also revealed the tumor stages of HCC patients. High expression of miR-455-5p and miR-30c-5p, which significantly correlated with better overall survival in tumor tissues, could also be detected in blood exosomes. Two pairs of miRNAs (miR-584-5p/miR-106-3p and miR-628-3p/miR-941) showed a 94.1% sensitivity and 68.4% specificity to differentiate HCC patients from non-HCC patients. The specificity of the combination was substantially influenced by alcohol consumption habits. CONCLUSION: This study suggested that blood exosomal miRNAs can be used as new non-invasive diagnostic tools for HCC. However, their accuracy could be affected by tumor stage and alcohol consumption habits.

12.
Sci Rep ; 7(1): 15005, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118455

RESUMEN

We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

14.
Sci Rep ; 5: 10880, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26038886

RESUMEN

An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade's rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies.

15.
Sci Rep ; 4: 7038, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25392033

RESUMEN

We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

16.
Sci Rep ; 4: 4613, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24714512

RESUMEN

Artificial honeycomb lattices with Dirac cone dispersion provide a macroscopic platform to study the massless Dirac quasiparticles and their novel geometric phases. In this paper, a quadruple-degenerate state is achieved at the center of the Brillouin zone in a two-dimensional honeycomb lattice phononic crystal, which is a result of accidental degeneracy of two double-degenerate states. In the vicinity of the quadruple-degenerate state, the dispersion relation is linear. Such quadruple degeneracy is analyzed by rigorous representation theory of groups. Using k·p method, a reduced Hamiltonian is obtained to describe the linear Dirac dispersion relations of this quadruple-degenerate state, which is well consistent with the simulation results. Near such accidental degeneracy, we observe some unique properties in wave propagating, such as defect-insensitive propagating character and the Talbot effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA