RESUMEN
Crocodile lizards (Shinisaurus crocodilurus) are an endangered, 'living fossil' reptile from a monophyletic family and therefore, a high priority for conservation. We constructed climatic models to evaluate the potential impact of climate change on the distribution of crocodile lizards for the period 2000 to 2100 and determined the key environmental factors that affect the dispersal of this endangered species. For the construction of climatic models, we used 985 presence-only data points and 6 predictor variables which showed excellent performance (AUC = 0.974). The three top-ranked factors predicting crocodile lizard distribution were precipitation of the wettest month (bio13, 37.1%), precipitation of the coldest quarter (bio19, 17.9%), and temperature seasonality (bio4, 14.3%). Crocodile lizards were, just as they are now, widely distributed in the north of Guangdong Province in China and Quang Ninh Province in Vietnam at the last glacial maximum (LGM). Since the LGM, there has been an increase in suitable habitats, particularly in east-central Guangxi Province, China. Under future global warming scenarios, the potential habitat for crocodile lizards is expected to decrease significantly in the next 100 years. Under the most optimistic scenario, only 7.35% to 6.54% of suitable habitat will remain, and under the worst climatic scenario, only 8.34% to 0.86% of suitable habitat will remain. Models for no dispersal and limited dispersal showed that all crocodile lizards would lose habitat as temperatures increase. Our work contributes to an increased understanding of the current and future spatial distribution of the species, supporting practical management and conservation plans.
RESUMEN
Taxonomic frameworks for medically important species such as cobras (genus Naja Laurenti, 1768; Squamata, Elapidae) are essential for the medical treatment of snake bites and accurate antivenin development. In this paper, we described the former N. kaouthia populations recorded from China as a new species and designated a neotype for N. atra-based morphological and mitochondrial phylogenetic analysis. The new species N. fuxisp. nov. was morphologically diagnosed from N. kaouthia by (1) regular single narrow crossband present on the middle and posterior parts of the dorsum (3-15, 7.9 ± 2.7, n = 32) and the dorsal surface of the tail (1-6, 4.2 ± 1.1, n = 32) of both adults and juveniles, buff-colored with dark fringes on both edges, vs. South Asian populations (n = 39) and Southeast Asian populations (n = 35) without cross bands, with irregular cross bands or multiple light-colored crossbands pairs, or densely woven lines; (2) small scales between the posterior chin shields, usually three (40%) or two (37%), rarely four (13%), or one (10%) (n = 30) vs. mostly one (81%) and rarely two (19%) (n = 28); (3) ventrals 179-205 (195.4 ± 6.7, n = 33) vs. South Asian populations 179-199 (188.7 ± 5.9, n = 12); Southeast Asian populations 168-186 (177.8 ± 4.9, n = 18). Phylogenetically, the new species forms an independent sister clade to the clade including N. atra, N. kaouthia, N. oxiana and N. sagittifera. Furthermore, the subspecies N. naja polyocellata should be resurrected and recognized as a full species, N. polyocellatacomb. nov., and the subspecies N. sumatrana miolepis should be resurrected.
RESUMEN
Kraits of the genus Bungarus Daudin 1803 are widely known venomous snakes distributed from Iran to China and Indonesia. Here, we use a combination of mitochondrial DNA sequence data and morphological data to describe a new species from Yingjiang County, Yunnan Province, China: Bungarus suzhenae sp. nov. Phylogenetically, this species forms a monophyletic lineage sister to the Bungarus candidus/multicinctus/wanghaotingi complex based on cyt b and ND4 genes but forms a sister species pair with the species B. magnimaculatus Wall & Evans, 1901 based on COI gene fragments. Morphologically, B. suzhenae sp. nov. is similar to the B. candidus/multicinctus/wanghaotingi complex but differs from these taxa by a combination of dental morphology, squamation, coloration pattern, as well as hemipenial morphology. A detailed description of the cranial osteology of the new species is given based on micro-CT tomography images. We revised the morphological characters of B. candidus/multicinctus/wanghaotingi complex and verified the validity of three species in this complex. The distribution of these species was revised; the records of B. candidus in China should be attributed to B. wanghaotingi. We also provide an updated key to species of Bungarus.