Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Antimicrob Chemother ; 77(12): 3256-3264, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171717

RESUMEN

BACKGROUND: Infections caused by bacterial biofilms are very difficult to treat. The use of currently approved antibiotics even at high dosages often fails, making the treatment of these infections very challenging. Novel antimicrobial agents that use distinct mechanisms of action are urgently needed. OBJECTIVES: To explore the use of [G1K,K8R]cGm, a designed cyclic analogue of the antimicrobial peptide gomesin, as an alternative approach to treat biofilm infections. METHODS: We studied the activity of [G1K,K8R]cGm against biofilms of Staphylococcus aureus, a pathogen associated with several biofilm-related infections. A combination of atomic force and real-time confocal laser scanning microscopies was used to study the mechanism of action of the peptide. RESULTS: The peptide demonstrated potent activity against 24 h-preformed biofilms through a concentration-dependent ability to kill biofilm-embedded cells. Mechanistic studies showed that [G1K,K8R]cGm causes morphological changes on bacterial cells and permeabilizes their membranes across the biofilm with a half-time of 65 min. We also tested an analogue of [G1K,K8R]cGm without disulphide bonds, and a linear unfolded analogue, and found both to be inactive. CONCLUSIONS: The results suggest that the 3D structure of [G1K,K8R]cGm and its stabilization by disulphide bonds are essential for its antibacterial and antibiofilm activities. Moreover, our findings support the potential application of this stable cyclic antimicrobial peptide to fight bacterial biofilms.


Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Biopelículas , Infecciones Estafilocócicas/microbiología , Péptidos Catiónicos Antimicrobianos/farmacología , Antibacterianos/farmacología , Bacterias , Disulfuros
2.
Nature ; 538(7625): 329-335, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27626386

RESUMEN

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.


Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Péptidos/química , Péptidos/síntesis química , Estabilidad Proteica , Secuencias de Aminoácidos , Cristalografía por Rayos X , Ciclización , Disulfuros/química , Calor , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Estereoisomerismo
3.
FASEB J ; 33(3): 3693-3703, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509130

RESUMEN

A 13 aa residue voltage-gated sodium (NaV) channel inhibitor peptide, Pn, containing 2 disulfide bridges was designed by using a chimeric approach. This approach was based on a common pharmacophore deduced from sequence and secondary structural homology of 2 NaV inhibitors: Conus kinoshitai toxin IIIA, a 14 residue cone snail peptide with 3 disulfide bonds, and Phoneutria nigriventer toxin 1, a 78 residue spider toxin with 7 disulfide bonds. As with the parent peptides, this novel NaV channel inhibitor was active on NaV1.2. Through the generation of 3 series of peptide mutants, we investigated the role of key residues and cyclization and their influence on NaV inhibition and subtype selectivity. Cyclic PnCS1, a 10 residue peptide cyclized via a disulfide bond, exhibited increased inhibitory activity toward therapeutically relevant NaV channel subtypes, including NaV1.7 and NaV1.9, while displaying remarkable serum stability. These peptides represent the first and the smallest cyclic peptide NaV modulators to date and are promising templates for the development of toxin-based therapeutic agents.-Peigneur, S., Cheneval, O., Maiti, M., Leipold, E., Heinemann, S. H., Lescrinier, E., Herdewijn, P., De Lima, M. E., Craik, D. J., Schroeder, C. I., Tytgat, J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors.


Asunto(s)
Caracoles/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/metabolismo , Arañas/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Oocitos/metabolismo , Péptidos/farmacología , Xenopus laevis/metabolismo
4.
Biophys J ; 112(4): 630-642, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28256223

RESUMEN

Cyclotides are ultra-stable cyclic disulfide-rich peptides from plants. Their biophysical effects and medically interesting activities are related to their membrane-binding properties, with particularly high affinity for phosphatidylethanolamine lipids. In this study we were interested in understanding the molecular details of cyclotide-membrane interactions, specifically with regard to the spatial orientation of the cyclotide kalata B1 from Oldenlandia affinis when embedded in a lipid bilayer. Our experimental approach was based on the use of solid-state 19F-NMR of oriented bilayers in conjunction with the conformationally restricted amino acid L-3-(trifluoromethyl)bicyclopent-[1.1.1]-1-ylglycine as an orientation-sensitive 19F-NMR probe. Its rigid connection to the kalata B1 backbone scaffold, together with the well-defined structure of the cyclotide, allowed us to calculate the protein alignment in the membrane directly from the orientation-sensitive 19F-NMR signal. The hydrophobic and polar residues on the surface of kalata B1 form well-separated patches, endowing this cyclotide with a pronounced amphipathicity. The peptide orientation, as determined by NMR, showed that this amphipathic structure matches the polar/apolar interface of the lipid bilayer very well. A location in the amphiphilic headgroup region of the bilayer was supported by 15N-NMR of uniformly labeled protein, and confirmed using solid-state 31P- and 2H-NMR. 31P-NMR relaxation data indicated a change in lipid headgroup dynamics induced by kalata B1. Changes in the 2H-NMR order parameter profile of the acyl chains suggest membrane thinning, as typically observed for amphiphilic peptides embedded near the polar/apolar bilayer interface. Furthermore, from the 19F-NMR analysis two important charged residues, E7 and R28, were found to be positioned equatorially. The observed location thus would be favorable for the postulated binding of E7 to phosphatidylethanolamine lipid headgroups. Furthermore, it may be speculated that this pair of side chains could promote oligomerization of kalata B1 through electrostatic intermolecular contacts via their complementary charges.


Asunto(s)
Ciclotidas/química , Ciclotidas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oldenlandia/metabolismo , Conformación Proteica
5.
J Biol Chem ; 291(33): 17049-65, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27311819

RESUMEN

ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Canal de Sodio Activado por Voltaje NAV1.7/química , Venenos de Araña/química , Sitios de Unión , Humanos , Resonancia Magnética Nuclear Biomolecular
6.
Biochim Biophys Acta Biomembr ; 1859(5): 835-844, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28115115

RESUMEN

The human voltage-gated sodium channel sub-type 1.7 (hNaV1.7) is emerging as an attractive target for the development of potent and sub-type selective novel analgesics with increased potency and fewer side effects than existing therapeutics. HwTx-IV, a spider derived peptide toxin, inhibits hNaV1.7 with high potency and is therefore of great interest as an analgesic lead. In the current study we examined whether engineering a HwTx-IV analogue with increased ability to bind to lipid membranes would improve its inhibitory potency at hNaV1.7. This hypothesis was explored by comparing HwTx-IV and two analogues [E1PyrE]HwTx-IV (mHwTx-IV) and [E1G,E4G,F6W,Y30W]HwTx-IV (gHwTx-IV) on their membrane-binding affinity and hNaV1.7 inhibitory potency using a range of biophysical techniques including computational analysis, NMR spectroscopy, surface plasmon resonance, and fluorescence spectroscopy. HwTx-IV and mHwTx-IV exhibited weak affinity for lipid membranes, whereas gHwTx-IV showed improved affinity for the model membranes studied. In addition, activity assays using SH-SY5Y neuroblastoma cells expressing hNaV1.7 showed that gHwTx-IV has increased activity at hNaV1.7 compared to HwTx-IV. Based on these results we hypothesize that an increase in the affinity of HwTx-IV for lipid membranes is accompanied by improved inhibitory potency at hNaV1.7 and that increasing the affinity of gating modifier toxins to lipid bilayers is a strategy that may be useful for improving their potency at hNaV1.7.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/farmacología , Fenómenos Biofísicos , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia , Venenos de Araña/metabolismo , Resonancia por Plasmón de Superficie
7.
Biochemistry ; 55(2): 396-405, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26685975

RESUMEN

The SET protein is a promising drug target in cancer therapy, because of its ability to inhibit the function of the tumor suppressor gene protein phosphatase 2A (PP2A). COG peptides, derived from apolipoprotein E (apoE), are potent antagonists of SET; they induce cytotoxicity in cancer cells upon binding to intracellular SET and modulate the nuclear factor kappa B (NF-κB) signaling pathway. However, the therapeutic potential of COG peptides is limited, because of their poor proteolytic stability and low bioavailability. In this study, the COG peptide, COG1410, was stabilized by grafting it onto the ultrastable cyclic peptide scaffold, Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II). The grafted MCoTI-II peptides were cytotoxic to a cancer cell line and showed high stability in human serum. The most potent grafted MCoTI-II peptide inhibited lipopolysaccharide (LPS)-mediated activation of NF-κB in murine macrophages. Overall, this study demonstrates the application of the MCoTI-II scaffold for the development of stable peptide drugs for cancer therapy.


Asunto(s)
Chaperonas de Histonas/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Factores de Transcripción/antagonistas & inhibidores , Apolipoproteínas E/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclotidas/química , Ciclotidas/farmacología , Proteínas de Unión al ADN , Humanos , Imagen por Resonancia Magnética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/genética , Proteína Fosfatasa 2/metabolismo
8.
Biopolymers ; 106(6): 853-863, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27287767

RESUMEN

The transcription factor p53 has a tumor suppressor role in leading damaged cells to apoptosis. Its activity is regulated/inhibited in healthy cells by the proteins MDM2 and MDMX. Overexpression of MDM2 and/or MDMX in cancer cells inactivates p53, facilitating tumor development. A 12-mer dual inhibitor peptide (pDI) was previously reported to be able to target and inhibit MDMX:p53 and MDM2:p53 interactions with nanomolar potency in vitro. With the aim of improving its cellular inhibitory activity, we produced a series of constrained pDI analogs featuring lactam staples that stabilize the bioactive helical conformation and fused them with a cell-penetrating peptide to increase cytosol delivery. We compared pDI and its analogs on their inhibitory potency, toxicity, and ability to enter cancer cells. Overall, the results show that these analogs keep their nanomolar affinity for MDM2 and MDMX and are highly active against cancer cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 853-863, 2016.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Sistemas de Liberación de Medicamentos , Complejos Multiproteicos , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Proto-Oncogénicas , Proteína p53 Supresora de Tumor , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Células HeLa , Humanos , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
9.
Biotechnol Bioeng ; 113(10): 2202-12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27093300

RESUMEN

Disulfide-rich peptides isolated from cone snails are of great interest as drug leads due to their high specificity and potency toward therapeutically relevant ion channels and receptors. They commonly contain the inhibitor cystine knot (ICK) motif comprising three disulfide bonds forming a knotted core. Here we report the successful enzymatic backbone cyclization of an ICK-containing peptide κ-PVIIA, a 27-amino acid conopeptide from Conus purpurascens, using a mutated version of the bacterial transpeptidase, sortase A. Although a slight loss of activity was observed compared to native κ-PVIIA, cyclic κ-PVIIA is a functional peptide that inhibits the Shaker voltage-gated potassium (Kv) channel. Molecular modeling suggests that the decrease in potency may be related to the loss of crucial, but previously unidentified electrostatic interactions between the N-terminus of the peptide and the Shaker channel. This hypothesis was confirmed by testing an N-terminally acetylated κ-PVIIA, which shows a similar decrease in activity. We also investigated the conformational dynamics and hydrogen bond network of cyc-PVIIA, both of which are important factors to be considered for successful cyclization of peptides. We found that cyc-PVIIA has the same conformational dynamics, but different hydrogen bond network compared to those of κ-PVIIA. The ability to efficiently cyclize ICK peptides using sortase A will enable future protein engineering for this class of peptides and may help in the development of novel therapeutic molecules. Biotechnol. Bioeng. 2016;113: 2202-2212. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Aminoaciltransferasas/ultraestructura , Proteínas Bacterianas/ultraestructura , Conotoxinas/química , Caracol Conus/metabolismo , Cisteína Endopeptidasas/ultraestructura , Cistina/química , Modelos Moleculares , Canales de Potasio/ultraestructura , Aminoaciltransferasas/química , Animales , Proteínas Bacterianas/química , Sitios de Unión , Cisteína Endopeptidasas/química , Disulfuros/química , Activación Enzimática , Modelos Químicos , Péptidos/química , Canales de Potasio/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína
10.
Antimicrob Agents Chemother ; 58(8): 4974-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913176

RESUMEN

We performed a structure-activity relationship study of the antibiofilm plant-derived decapeptide OSIP108. Introduction of positively charged amino acids R, H, and K resulted in an up-to-5-fold-increased antibiofilm activity against Candida albicans compared to native OSIP108, whereas replacement of R9 resulted in complete abolishment of its antibiofilm activity. By combining the most promising amino acid substitutions, we found that the double-substituted OSIP108 analogue Q6R/G7K had an 8-fold-increased antibiofilm activity.


Asunto(s)
Antifúngicos/química , Proteínas de Arabidopsis/química , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antifúngicos/farmacología , Arabidopsis/química , Proteínas de Arabidopsis/farmacología , Arginina/química , Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Histidina/química , Lisina/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Electricidad Estática , Relación Estructura-Actividad
11.
Antimicrob Agents Chemother ; 58(5): 2647-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566179

RESUMEN

We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Oligopéptidos/farmacología , Candida albicans/crecimiento & desarrollo
12.
J Org Chem ; 79(12): 5538-44, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24918986

RESUMEN

Disulfide-rich cyclic peptides have exciting potential as leads or frameworks in drug discovery; however, their use is faced with some synthetic challenges, mainly associated with construction of the circular backbone and formation of the correct disulfides. Here we describe a simple and efficient Fmoc solid-phase peptide synthesis (SPPS)-based method for synthesizing disulfide-rich cyclic peptides. This approach involves SPPS on 2-chlorotrityl resin, cyclization of the partially protected peptide in solution, cleavage of the side-chain protecting groups, and oxidization of cysteines to yield the desired product. We illustrate this method with the synthesis of peptides from three different classes of cyclic cystine knot motif-containing cyclotides: Möbius (M), trypsin inhibitor (T), and bracelet (B). We show that the method is broadly applicable to peptide engineering, illustrated by the synthesis of two mutants and three grafted analogues of kalata B1. The method reduces the use of highly caustic and toxic reagents and is better suited for high-throughput synthesis than previously reported methods for producing disulfide-rich cyclic peptides, thus offering great potential to facilitate pharmaceutical optimization of these scaffolds.


Asunto(s)
Ciclotidas/síntesis química , Cisteína/química , Disulfuros/química , Fluorenos/química , Péptidos Cíclicos/síntesis química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Ciclización , Ciclotidas/química , Oxidación-Reducción , Péptidos Cíclicos/química , Técnicas de Síntesis en Fase Sólida
13.
Molecules ; 19(9): 15088-102, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25244288

RESUMEN

We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp), which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image) form of OSIP108 with the L-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.


Asunto(s)
Antineoplásicos/toxicidad , Proteínas de Arabidopsis/farmacología , Arabidopsis/fisiología , Cisplatino/toxicidad , Mitocondrias/efectos de los fármacos , Células Hep G2 , Humanos , Mitocondrias/fisiología
15.
ACS Pharmacol Transl Sci ; 4(4): 1379-1389, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423272

RESUMEN

T-type calcium (CaV3) channels play a crucial role in the generation and propagation of action potentials in excitable cells and are considered potential drug targets for the treatment of neurological and cardiovascular diseases. Given the limited pharmacological repertoire for these channels, there is a great need for novel potent and selective CaV3 channel inhibitors. In this study, we used Xenopus oocytes to heterologously express CaV3.1 channels and characterized the interaction with a small cyclic peptide, PnCS1. Using molecular modeling, PnCS1 was docked into the cryo-electron microscopy structure of the human CaV3.1 channel and molecular dynamics were performed on the resultant complex. The binding site of the peptide was mapped with the involvement of critical amino acids located in the pore region and fenestrations of the channel. More specifically, we found that PnCS1 reclines in the central cavity of the pore domain of the CaV3.1 channel and resides stably between the selectivity filter and the intracellular gate, blocking the conduction pathway of the channel. Using Multiple Attribute Positional Scanning approaches, we developed a series of PnCS1 analogues. These analogues had a reduced level of inhibition, confirming the importance of specific residues and corroborating our modeling. In summary, functional studies of PnCS1 on the CaV3.1 channel combined with molecular dynamics results provide the basis for understanding the molecular interactions of PnCS1 with CaV3.1 and are fundamental to structure-based drug discovery for treating CaV3 channelopathies.

16.
Biochim Biophys Acta Biomembr ; 1863(1): 183480, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979382

RESUMEN

Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Proteínas de Artrópodos , Membrana Celular/metabolismo , Sistemas de Liberación de Medicamentos , Neoplasias/metabolismo , Arañas/química , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Artrópodos/química , Proteínas de Artrópodos/farmacocinética , Proteínas de Artrópodos/farmacología , Membrana Celular/patología , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Neoplasias/patología
17.
Biochem Pharmacol ; 183: 114291, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075312

RESUMEN

Voltage-gated sodium (NaV) channels play crucial roles in a range of (patho)physiological processes. Much interest has arisen within the pharmaceutical industry to pursue these channels as analgesic targets following overwhelming evidence that NaV channel subtypes NaV1.7-NaV1.9 are involved in nociception. More recently, NaV1.1, NaV1.3 and NaV1.6 have also been identified to be involved in pain pathways. Venom-derived disulfide-rich peptide toxins, isolated from spiders and cone snails, have been used extensively as probes to investigate these channels and have attracted much interest as drug leads. However, few peptide-based leads have made it as drugs due to unfavourable physiochemical attributes including poor in vivo pharmacokinetics and limited oral bioavailability. The present work aims to bridge the gap in the development pipeline between drug leads and drug candidates by downsizing these larger venom-derived NaV inhibitors into smaller, more "drug-like" molecules. Here, we use molecular engineering of small cyclic peptides to aid in the determination of what drives subtype selectivity and molecular interactions of these downsized inhibitors across NaV subtypes. We designed a series of small, stable and novel NaV probes displaying NaV subtype selectivity and potency in vitro coupled with potent in vivo analgesic activity, involving yet to be elucidated analgesic pathways in addition to NaV subtype modulation.


Asunto(s)
Fragmentos de Péptidos/farmacología , Venenos de Escorpión/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/química , Venenos de Escorpión/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Xenopus laevis
18.
J Med Chem ; 64(14): 9906-9915, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34197114

RESUMEN

We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.


Asunto(s)
Péptidos Cíclicos/farmacología , Receptor de Melanocortina Tipo 1/agonistas , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
19.
RSC Chem Biol ; 1(5): 405-420, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458771

RESUMEN

Cell penetrating peptides (CPPs) are valuable tools for developing anticancer therapies due to their ability to access intracellular targets, including protein-protein interactions. cPF4PD is a newly described CPP designed from a transduction domain of the human defense protein platelet factor 4 (PF4), that also has antimalarial activity. The cPF4PD peptide recapitulates the helical structure of the PF4 domain and maintains activity against intracellular malaria parasites via a selective membrane-active mechanism. We hypothesized that cPF4PD and PF4-derived peptide analogues would enter cancer cells and have utility as scaffolds for delivering a peptide dual inhibitor (pDI) sequence with ability to inhibit p53:MDM2/X interactions and reactivate the p53 pathway. Here we designed and produced PF4 peptide and PF4 peptide-pDI grafted analogues with low micromolar activity toward melanoma and leukemia. Two grafted analogues achieved a stable helical structure and inhibited interaction with MDM2 and MDMX. These peptides reached the cytoplasm of cells but were unable to reactivate the p53 pathway. Instead, the cytotoxic mechanism was attributed to peptide binding to mitochondrial membranes that perturbed function within two hours of treatment. These studies of PF4-derived CPPs suggest their potential as scaffolds for delivering cell-impermeable cargoes into the cytoplasm of cells and highlight the importance of characterizing the internalization and cell death mechanism of designer peptide-based drugs.

20.
Pain ; 160(8): 1766-1780, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31335646

RESUMEN

Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, postsurgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute postsurgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor µ-theraphotoxin-Pn3a is effectively antiallodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. In addition, we found superadditive antinociceptive effects of subtherapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice after surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors; however, several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1), and Cacna1b (CaV2.2), were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Baclofeno/uso terapéutico , Agonistas de Receptores GABA-B/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Analgésicos Opioides/farmacología , Animales , Baclofeno/farmacología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Agonistas de Receptores GABA-B/farmacología , Masculino , Ratones , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA