Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 10(5): e1004377, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24832686

RESUMEN

South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.


Asunto(s)
Variación Genética , Genética de Población , Genoma Humano , Haplotipos , Humanos , India , Polimorfismo de Nucleótido Simple
2.
Bioinformatics ; 30(12): 1707-13, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24558117

RESUMEN

MOTIVATION: Whole-genome sequencing (WGS) is now routinely used for the detection and identification of genetic variants, particularly single nucleotide polymorphisms (SNPs) in humans, and this has provided valuable new insights into human diversity, population histories and genetic association studies of traits and diseases. However, this relies on accurate detection and genotyping calling of the polymorphisms present in the samples sequenced. To minimize cost, the majority of current WGS studies, including the 1000 Genomes Project (1 KGP) have adopted low coverage sequencing of large number of samples, where such designs have inadvertently influenced the development of variant calling methods on WGS data. Assessment of variant accuracy are usually performed on the same set of low coverage individuals or a smaller number of deeply sequenced individuals. It is thus unclear how these variant calling methods would fare for a dataset of ∼100 samples from a population not part of the 1 KGP that have been sequenced at various coverage depths. AVAILABILITY AND IMPLEMENTATION: Using down-sampling of the sequencing reads obtained from the Singapore Sequencing Malay Project (SSMP), and a set of SNP calls from the same individuals genotyped on the Illumina Omni1-Quad array, we assessed the sensitivity of SNP detection, accuracy of genotype calls made and variant accuracy for six commonly used variant calling methods of GATK, SAMtools, Consensus Assessment of Sequence and Variation (CASAVA), VarScan, glfTools and SOAPsnp. The results indicate that at 5× coverage depth, the multi-sample callers of GATK and SAMtools yield the best accuracy particularly if the study samples are called together with a large number of individuals such as those from 1000 Genomes Project. If study samples are sequenced at a high coverage depth such as 30×, CASAVA has the highest variant accuracy as compared with the other variant callers assessed.


Asunto(s)
Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Femenino , Genoma Humano , Genotipo , Humanos , Masculino , Alineación de Secuencia
3.
Nat Biotechnol ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238480

RESUMEN

RNA fate and function are affected by their structures and interactomes. However, how RNA and RNA-binding proteins (RBPs) assemble into higher-order structures and how RNA molecules may interact with each other to facilitate functions remain largely unknown. Here we present KARR-seq, which uses N3-kethoxal labeling and multifunctional chemical crosslinkers to covalently trap and determine RNA-RNA interactions and higher-order RNA structures inside cells, independent of local protein binding to RNA. KARR-seq depicts higher-order RNA structure and detects widespread intermolecular RNA-RNA interactions with high sensitivity and accuracy. Using KARR-seq, we show that translation represses mRNA compaction under native and stress conditions. We determined the higher-order RNA structures of respiratory syncytial virus (RSV) and vesicular stomatitis virus (VSV) and identified RNA-RNA interactions between the viruses and the host RNAs that potentially regulate viral replication.

4.
BMC Bioinformatics ; 14: 355, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24308284

RESUMEN

BACKGROUND: Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. RESULTS: Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. CONCLUSIONS: The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses.


Asunto(s)
Biología Computacional/métodos , Virus del Dengue/genética , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Dengue/genética , Dengue/virología , Virus del Dengue/clasificación , Variación Genética , Genómica , Humanos , Fenotipo , Recombinación Genética , Alineación de Secuencia , Especificidad de la Especie
5.
Nat Biotechnol ; 39(2): 225-235, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32839564

RESUMEN

Determining the spatial organization of chromatin in cells mainly relies on crosslinking-based chromosome conformation capture techniques, but resolution and signal-to-noise ratio of these approaches is limited by interference from DNA-bound proteins. Here we introduce chemical-crosslinking assisted proximity capture (CAP-C), a method that uses multifunctional chemical crosslinkers with defined sizes to capture chromatin contacts. CAP-C generates chromatin contact maps at subkilobase (sub-kb) resolution with low background noise. We applied CAP-C to formaldehyde prefixed mouse embryonic stem cells (mESCs) and investigated loop domains (median size of 200 kb) and nonloop domains (median size of 9 kb). Transcription inhibition caused a greater loss of contacts in nonloop domains than loop domains. We uncovered conserved, transcription-state-dependent chromatin compartmentalization at high resolution that is shared from Drosophila to human, and a transcription-initiation-dependent nuclear subcompartment that brings multiple nonloop domains in close proximity. We also showed that CAP-C could be used to detect native chromatin conformation without formaldehyde prefixing.


Asunto(s)
Cromatina/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Inhibidores Enzimáticos/farmacología , Genoma , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética
6.
PLoS One ; 10(11): e0142473, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566128

RESUMEN

Dengue virus (DENV) populations are characteristically highly diverse. Regular lineage extinction and replacement is an important dynamic DENV feature, and most DENV lineage turnover events are associated with increased incidence of disease. The role of genetic diversity in DENV lineage extinctions is not understood. We investigated the nature and extent of genetic diversity in the envelope (E) gene of DENV serotype 1 representing different lineages histories. A region of the DENV genome spanning the E gene was amplified and sequenced by Roche/454 pyrosequencing. The pyrosequencing results identified distinct sub-populations (haplotypes) for each DENV-1 E gene. A phylogenetic tree was constructed with the consensus DENV-1 E gene nucleotide sequences, and the sequences of each constructed haplotype showed that the haplotypes segregated with the Sanger consensus sequence of the population from which they were drawn. Haplotypes determined through pyrosequencing identified a recombinant DENV genome that could not be identified through Sanger sequencing. Nucleotide level sequence diversities of DENV-1 populations determined from SNP analysis were very low, estimated from 0.009-0.01. There were also no stop codon, frameshift or non-frameshift mutations observed in the E genes of any lineage. No significant correlations between the accumulation of deleterious mutations or increasing genetic diversity and lineage extinction were observed (p>0.5). Although our hypothesis that accumulation of deleterious mutations over time led to the extinction and replacement of DENV lineages was ultimately not supported by the data, our data does highlight the significant technical issues that must be resolved in the way in which population diversity is measured for DENV and other viruses. The results provide an insight into the within-population genetic structure and diversity of DENV-1 populations.


Asunto(s)
Virus del Dengue/genética , Dengue/virología , Variación Genética , Filogenia , Genoma Viral , Humanos , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ARN , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA