RESUMEN
Long noncoding RNAs (lncRNAs) play fundamental roles in cancer development; however, the underlying mechanisms for a large proportion of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) have not been elucidated. The expression of colon cancer-associated transcript-1 (CCAT1) in PDAC specimens and cell lines was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The function of CCAT1 was examined in vitro and in vivo. The interactions among CCAT1, miR-24-3p and c-Myc were determined by bioinformatics analysis, RNA immunoprecipitation (RIP), dual-luciferase reporter assay, and rescue experiments. CCAT1 was significantly increased in PDAC, positively correlated with PDAC progression and predicted a worse prognosis. Furthermore, CCAT1 enhanced Adenosine triphosphate (ATP) production to facilitate PDAC cell proliferation, colony formation and motility in vitro and tumor growth in vivo. CCAT1 may serve as an miR-24-3p sponge, thereby counteracting its repression by c-Myc expression. Reciprocally, c-Myc may act as a transcription factor to alter CCAT1 expression by directly targeting its promoter region, thus forming a positive feedback loop with CCAT1. Collectively, these results demonstrate that a positive feedback loop of CCAT1/miR-24-3p/c-Myc is involved in PDAC development, which may serve as a biomarker and therapeutic target for PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias del Colon , MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
BACKGROUND: Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS: Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFßRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS: A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFßRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFßRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS: Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-ß signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/genética , Endosomas , Hibridación Fluorescente in Situ , Neoplasias Pancreáticas/genética , ARN Circular , Proteína smad3/genética , Factor de Crecimiento Transformador beta , Neoplasias PancreáticasRESUMEN
Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin ß3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.
Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias PancreáticasRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) presents with high mortality and short overall survival. Cancer-associated fibroblasts (CAFs) act as refuge for cancer cells in PDAC. Mechanisms of intracelluar communication between CAFs and cancer cells need to be explored. Long noncoding RNAs (lncRNAs) are involved in the modulation of oncogenesis and tumor progression of PDAC; however, specific lncRNAs and their mechanism of action have not been clarified clearly in tumoral microenvironment. This work aims to identify novel lncRNAs involved in cellular interaction between cancer cells and CAFs in PDAC. To this end, differentially expressed lncRNAs between long-term and short-term survival PDAC patients are screened. Lnc-FSD2-31:1 is found to be significantly increased in long-term survival patients. This work then discovers that tumor-derived lnc-FSD2-31:1 restrains CAFs activation via miR-4736 transported by extracellular vesicles (EVs) in vitro and in vivo. Mechanistically, EVs-derived miR-4736 suppresses autophagy and contributes to CAFs activation by targeting ATG7. Furthermore, blocking miR-4736 suppresses tumor growth in genetically engineered KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+, and Pdx-1-Cre) mouse model of PDAC. This study demonstrates that intratumoral lnc-FSD2-31:1 modulates autophagy in CAFs resulting in their activation through EVs-derived miR-4736. Targeting miR-4736 may be a potential biomarker and therapeutic target for PDAC.
Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , ARN Largo no Codificante , Ratones , Animales , Fibroblastos Asociados al Cáncer/patología , ARN Largo no Codificante/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , MicroARNs/genética , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
Hypertriglyceridemic pancreatitis (HTGP) is featured by higher incidence of complications and poor clinical outcomes. Gut microbiota dysbiosis is associated with pancreatic injury in HTGP and the mechanism remains unclear. Here, we observe lower diversity of gut microbiota and absence of beneficial bacteria in HTGP patients. In a fecal microbiota transplantation mouse model, the colonization of gut microbiota from HTGP patients recruits neutrophils and increases neutrophil extracellular traps (NETs) formation that exacerbates pancreatic injury and systemic inflammation. We find that decreased abundance of Bacteroides uniformis in gut microbiota impairs taurine production and increases IL-17 release in colon that triggers NETs formation. Moreover, Bacteroides uniformis or taurine inhibits the activation of NF-κB and IL-17 signaling pathways in neutrophils which harness NETs and alleviate pancreatic injury. Our findings establish roles of endogenous Bacteroides uniformis-derived metabolic and inflammatory products on suppressing NETs release, which provides potential insights of ameliorating HTGP through gut microbiota modulation.
Asunto(s)
Trampas Extracelulares , Microbioma Gastrointestinal , Pancreatitis , Ratones , Animales , Humanos , Trampas Extracelulares/metabolismo , Interleucina-17/metabolismo , Microbioma Gastrointestinal/fisiología , Pancreatitis/metabolismo , Taurina/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that typically features a dramatic desmoplastic reaction, especially fibroblasts. The roles of cancer-associated fibroblasts (CAFs) in PDAC have received more attention in recent years. As increasing evidence suggests the heterogeneity of CAFs in PDAC, different CAF subtypes have been shown to support tumor growth, while others suppress cancer proliferation. Myofibrotic CAFs (myCAFs) show alpha-smooth muscle actin (α-SMA) high interleukin-6 (IL-6) low myofibroblastic features, are activated by direct contact with tumor cells, and are located in the periglandular region. Inflammatory CAFs (iCAFs) show α-SMA low IL-6 high inflammatory features, are activated by paracrine factors secreted from tumor cells, and are located away from cancer cells. Antigen-presenting CAFs (apCAFs) show major histocompatibility complex II (MHC II) family genes that are highly expressed. CAFs have also been gradually explored as diagnostic and prognostic markers in pancreatic cancer. Targeted therapy of CAFs in PDAC has gradually attracted attention. With the deepening of related studies, some meaningful positive and negative results have surfaced, and CAFs may be the key to unlocking the door to pancreatic cancer treatment. Our review summarizes recent advances in the heterogeneity, function, and markers of CAFs in pancreatic cancer, as well as research and treatment targeting CAFs in pancreatic cancer.
RESUMEN
Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.
Asunto(s)
Fibrosis/complicaciones , MicroARNs/metabolismo , Pancreatitis Crónica/genética , ARN Largo no Codificante/metabolismo , Animales , Autofagia , Estudios de Casos y Controles , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Ratones , Pancreatitis Crónica/patologíaRESUMEN
BACKGROUND: Ubiquitin-like protein 4A (UBL4A) plays a significant role in protein metabolism and the maintenance of cellular homeostasis. In cancer, UBL4A represses tumorigenesis and is involved in various signaling pathways. Pancreatic ductal adenocarcinoma (PDAC) is still a major cause of cancer-related death and the underlying molecular mechanism of UBL4A and PDAC remains unknown. METHODS: First, the prognostic role of UBL4A and its expression in human PDAC patients and in pancreatic cancer cell lines were detected by survival analysis and qRT-PCR, western blotting, and immunohistochemistry. Next, the effects of UBL4A on proliferation and metastasis in pancreatic cancer were evaluated by functional assays in vitro and in vivo. In addition, chloroquine was introduced to determine the role of autophagy in UBL4A-related tumor proliferation and metastasis. Ultimately, coimmunoprecipitation was used to confirm the interaction between UBL4A and lysosome associated membrane protein-1 (LAMP1), and western blotting was performed to explore the UBL4A mechanism. RESULTS: We found that UBL4A was decreased in PDAC and that high levels of UBL4A correlated with a favorable prognosis. We observed that UBL4A inhibited tumor proliferation and metastasis through suppression of autophagy, a critical intracellular catabolic process that reportedly protects cells from nutrient starvation and other stress conditions. UBL4A caused impaired autophagic degradation in vitro, a crucial process in autophagy, by disturbing the function of lysosomes and contributing to autophagosome accumulation. We found a positive correlation between UBL4A and LAMP1. Furthermore, UBL4A caused lysosomal dysfunction by directly interacting with LAMP1, and LAMP1 overexpression reversed the antitumor effects of UBL4A in pancreatic cancer. In addition, we demonstrated that UBL4A suppressed tumor growth and metastasis in a pancreatic orthotopic tumor model. CONCLUSIONS: These findings suggest that UBL4A exerts an antitumor effect on autophagy-related proliferation and metastasis in PDAC by directly targeting LAMP1. Herein, we describe a novel mechanism of UBL4A that suppresses the progression of pancreatic cancer. UBL4A might be a promising target for the treatment and prognostication of PDAC.
Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/metabolismo , Adulto , Anciano , Animales , Apoptosis , Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Xenoinjertos , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Unión Proteica , Ubiquitinas/genética , Neoplasias PancreáticasRESUMEN
To assess the association between the clinical parameters within 48âhours of admission and the occurrence of infected pancreatic necrosis (IPN) during the late phase of necrotizing pancreatitis (NP).All patients were divided into 2 groups, the IPN and non-IPN groups. The clinical data were retrospectively analyzed. Univariate and multivariate logistic regression analyses were performed to evaluate the relationship between clinical parameters and IPN secondary to NP. The performance of each independent variable was plotted by the receiver-operating characteristic (ROC) curve. Consequently, the cut-off level of each independent variable with its sensitivity and specificity was calculated.A total of 215 patients were enrolled in our study. Among them, 87 (40.5%) patients developed IPNs after a median of 13.5 (9.5-23.0) days from admission. Multivariate analysis indicated that the level of hematocrit (HCT) from 40% to 50% (P=.012, odds ratio (OR)â=â2.407), HCT over 50% (Pâ<â.009, ORâ=â6.794), blood urea nitrogen (BUN) (Pâ=â.040, ORâ=â1.894), C-reactive protein (CRP) (Pâ=â.043, ORâ=â1.837), and procalcitonin (PCT) (Pâ=â.002, ORâ=â2.559) were independent risk factors of IPN secondary to NP. The ROC cures revealed that the area under the ROC (AUC) of the maximum level of HCT, BUN, CRP, and PCT within 48âhours of admission was 0.687, 0.620, 0.630, and 0.674 respectively. Furthermore, the combination of these 4 individual parameters contributes to a more preferable AUC of 0.789 with a sensitivity of 67.8% and specificity of 77.3%.The maximum levels of PCT, CRP, HCT, and BUN within 48âhours of admission are independent factors of IPN and their combination might accurately predict the occurrence of IPN secondary to NP.