Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pain ; 18: 17448069221146398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36474308

RESUMEN

Chronic pain is the predominant problem for rheumatoid arthritis patients, and negatively affects quality of life. Arthritis pain management remains largely inadequate, and developing new treatment strategies are urgently needed. Spinal inflammation and oxidative stress contribute to arthritis pain and represent ideal targets for the treatment of arthritis pain. In the present study, collagen-induced arthritis (CIA) mouse model was established by intradermally injection of type II collagen (CII) in complete Freund's adjuvant (CFA) solution, and exhibited as paw and ankle swelling, pain hypersensitivity and motor disability. In spinal cord, CIA inducement triggered spinal inflammatory reaction presenting with inflammatory cells infiltration, increased Interleukin-1ß (IL-1ß) expression, and up-regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved caspase-1 levels, elevated spinal oxidative level presenting as decreased nuclear factor E2-related factor 2 (Nrf2) expression and Superoxide dismutase (SOD) activity. To explore potential therapeutic options for arthritis pain, emodin was intraperitoneally injected for 3 days on CIA mice. Emodin treatment statistically elevated mechanical pain sensitivity, suppressed spontaneous pain, recovered motor coordination, decreased spinal inflammation score and IL-1ß expression, increased spinal Nrf2 expression and SOD activity. Further, AutoDock data showed that emodin bind to Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) through two electrovalent bonds. And emodin treatment increased the phosphorylated AMPK at threonine 172. In summary, emodin treatment activates AMPK, suppresses NLRP3 inflammasome response, elevates antioxidant response, inhibits spinal inflammatory reaction and alleviates arthritis pain.


Asunto(s)
Artritis Experimental , Emodina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide , Dolor Crónico , Emodina/uso terapéutico , Inflamación/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Exp Ther Med ; 27(1): 44, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38144917

RESUMEN

Chronic pain reduces the quality of life and ability to function of individuals suffering from it, making it a common public health problem. Neuroinflammation which is mediated by the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the spinal cord participates and modulates chronic pain. A chronic inflammatory pain mouse model was created in the current study by intraplantar injection of complete Freund's adjuvant (CFA) into C57BL/6J left foot of mice. Following CFA injection, the mice had enhanced pain sensitivities, decreased motor function, increased spinal inflammation and activated spinal astrocytes. Emodin (10 mg/kg) was administered intraperitoneally into the mice for 3 days. As a result, there were fewer spontaneous flinches, higher mechanical threshold values and greater latency to fall. Additionally, in the spinal cord, emodin administration reduced leukocyte infiltration level, downregulated protein level of IL-1ß, lowered histone deacetylase (HDAC)6 and NLRP3 inflammasome activity and suppressed astrocytic activation. Emodin also binds to HDAC6 via four electrovalent bonds. In summary, emodin treatment blocked the HDAC6/NLRP3 inflammasome signaling, suppresses spinal inflammation and alleviates chronic inflammatory pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA