Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 38(10): 3257-3264, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230852

RESUMEN

With the development of electric vehicles and products, lithium metal batteries with solid-state electrolytes have shown a broad application prospect. However, the uneven deposition of lithium, low ion conductivity, narrow electrochemical window, and high interfacial impedance limit the safety and performance of the solid-state batteries. Herein, we develop a non-ceramic solid electrolyte based on the graphene oxide aerogel frame filling with polyethylene oxide (GSPE). The resulting uniform and resilient framework structure form a continuous Li-ion adsorption zone, which ensures uniform ion-current distribution at the interface while obtaining the relatively high ionic conductivity, effectively preventing the uneven deposition of lithium, and thus greatly improving the battery stability. Comprehensive electrochemical analysis showed that GSPE achieved an ionic conductivity of 4.12 × 10-4 S cm-1 at 50 °C. The assembled LiFePO4(LFP) |GSPE| Li full battery can stably cycle for more than 100 cycles at 0.1 C, and the lithium symmetrical battery can continuously be plating-peeling for more than 600 h at 0.1 mA cm-2. The method of using the carbon aerogel structure to achieve the uniform deposition of lithium ions has explored a new possible research direction for all-solid-state batteries.

2.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591116

RESUMEN

With the rapid development of intelligent applications, the demand for high-sensitivity pressure sensor is increasing. However, the simple and efficient preparation of an industrial high-sensitivity sensor is still a challenge. In this study, adhesives with different elastic moduli are used to bond pressure-sensitive elements of double-sided sensitive grids to prepare a highly sensitive and fatigue-resistant pressure sensor. It was observed that the low elastic modulus adhesive effectively produced tensile and compressive strains on both sides of the sensitive grids to induce greater strain transfer efficiency in the pressure sensor, thus improving its sensitivity. The sensitivity of the sensor was simulated by finite element analysis to verify that the low elastic modulus adhesive could enhance the sensitivity of the sensor up to 12%. The preparation of high-precision and fatigue-resistant pressure sensors based on low elastic modulus, double-sided sensitive grids makes their application more flexible and convenient, which is urgently needed in the miniaturization and integration electronics field.


Asunto(s)
Adhesivos , Fatiga , Adhesivos/química , Módulo de Elasticidad , Análisis de Elementos Finitos , Humanos , Presión
3.
Langmuir ; 37(46): 13696-13702, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34758614

RESUMEN

Adhesive and self-healing elastomers are urgently needed for their convenience and intelligence in biological medicine, flexible electronics, intelligent residential systems, etc. However, their inevitable use in harsh environments results in further enhancement requirements of the structure and performance of adhesive and self-healing elastomers. Herein, a novel self-healing and high-adhesion silicone elastomer was designed by the synergistic effect of multiple dynamic bonds. It revealed excellent stretchability (368%) and self-healing properties at room temperature (98.1%, 5 h) and in a water environment (96.4% for 5 h). Meanwhile, the resultant silicone elastomer exhibited high adhesion to metal and nonmetal and showed stable adhesion in harsh environments, such as under acidic (pH 1) and alkaline (pH 12) environments, salt water, petroleum ether, water, etc. Furthermore, it was applied as a shatter-proof protective layer and a rust-proof coating, proving its significant potential in intelligent residential system applications.


Asunto(s)
Elastómeros , Elastómeros de Silicona , Temperatura , Agua
4.
Nanoscale ; 16(25): 11928-11958, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38847091

RESUMEN

As a representative artificial neural network (ANN) for incorporating sensing functions and memory functions into one system to achieve highly miniaturized and highly integrated devices or systems, artificial sensory systems (ASSs) can have a far-reaching influence on precise instrumentation, sensing, and automation engineering. Artificial sensory systems have enjoyed considerable progress in recent years, from low degree integrations to highly advanced sophisticated integrations, from single-modal perceptions to multimode-fused perceptions. However, there are issues around the large hardware area, power consumption, and communication bandwidth needed during the processes where multimodal sensing signals are converted into a digital mode before they can be processed by a digital processor. Therefore, deepening the research into sensory integration is of great importance. In this review, we briefly introduce fundamental knowledge about the memristor mechanism, describe some representative human somatosensory systems, and elucidate the relationship between the properties of memristor devices and the structure. The electronic character of the sensors, future prospects, and key challenges surrounding sensor-memory integrated technologies are also discussed.


Asunto(s)
Redes Neurales de la Computación , Humanos , Técnicas Biosensibles
5.
Bioinspir Biomim ; 19(3)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38631357

RESUMEN

To improve the adaptability of soft robots to the environment and achieve reliable attachment on various surfaces such as smooth and rough, this study draws inspiration from the collaborative attachment strategy of insects, cats, and other biological claw hooks and foot pads, and designs an actuator with a bionic claw hook-suction cup hybrid structure. The rigid biomimetic pop-up claw hook linkage mechanism is combined with a flexible suction cup of a 'foot pad' to achieve a synergistic adhesion effect between claw hook locking and suction cup adhesion through the deformation control of a soft pneumatic actuator. A pop-up claw hook linkage mechanism based on the principle of cat claw movement was designed, and the attachment mechanism of the biological claw hooks and footpads was analysed. An artificial muscle-spring-reinforced flexible pneumatic actuator (SRFPA) was developed and a kinematic model of the SRFPA was established and analysed using Abaqus. Finally, a prototype of the hybrid actuator was fabricated. The kinematic and mechanical performances of the SRFPA and entire actuator were characterised, and the attachment performance of the hybrid actuator to smooth and rough surfaces was tested. The results indicate that the proposed biomimetic claw hook-suction cup hybrid structure actuator is effective for various types of surface adhesion, object grasping, and robot walking. This study provides new insights for the design of highly adaptable robots and biomimetic attachment devices.


Asunto(s)
Biomimética , Diseño de Equipo , Robótica , Robótica/instrumentación , Animales , Biomimética/instrumentación , Fenómenos Biomecánicos , Pezuñas y Garras/fisiología , Biónica , Gatos , Materiales Biomiméticos
6.
ACS Sens ; 9(6): 2907-2914, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38759108

RESUMEN

Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.


Asunto(s)
Biónica , Tacto , Dispositivos Electrónicos Vestibles , Humanos , Electrodos , Suministros de Energía Eléctrica , Impresión Tridimensional , Polivinilos/química
7.
ACS Appl Mater Interfaces ; 16(1): 1727-1736, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150505

RESUMEN

A microstructured surface has been applied in self-powered triboelectric pressure sensors to increase the charge-carrying sites and enhance the output performance. However, the microstructure increases the distance between the electrode and the triboelectric layer, and its influence on the output performance is unknown. Herein, we proposed a dome-conformal electrode strategy for a self-powered triboelectric nanogenerator (TENG) pressure sensor. With a simple reverse-dome adsorption process, an ultrathin triboelectric layer and Ag electrode can be made conformal to the dome PDMS structure. The TENG sensor is constructed with paper as a positive triboelectric layer. Compared with the device based on nonconformal structure, the conformal design strategy endows the device with a faster charge transfer and enhanced output voltage. By doping with BaTiO3, the outermost triboelectric layer can be easily modified to improve its ability of sustaining charge, and an ultrathin PDMS layer is coated on the triboelectric layer to expand the triboelectric polarity difference between two triboelectric layers so as to enhance the output voltage. The synergistic effects enable the optimized TENG sensor with a sensitivity of 0.75 V/kPa in the low-pressure region (0-26 kPa) and 0.19 V/kPa in the high-pressure range (26-120 kPa). Its application in human motion detection, grabbing water beakers, and noncontact distance testing has been demonstrated. This work provides a route such as a conformal structure design strategy to enhance the output performance of a microstructure-based TENG sensor.

8.
Materials (Basel) ; 17(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893873

RESUMEN

Due to the lower cost compared to screen-printed silver contacts, the Ni/Cu/Ag contacts formed by plating have been continuously studied as a potential metallization technology for solar cells. To address the adhesion issue of backside grid lines in electroplated n-Tunnel Oxide Passivating Contacts (n-TOPCon) solar cells and reduce ohmic contact, we propose a novel approach of adding a Ni/Si alloy seed layer between the Ni and Si layers. The metal nickel layer is deposited on the backside of the solar cells using electron beam evaporation, and excess nickel is removed by H2SO4:H2O2 etchant under annealing conditions of 300-425 °C to form a seed layer. The adhesion strength increased by more than 0.5 N mm-1 and the contact resistance dropped by 0.5 mΩ cm2 in comparison to the traditional direct plating Ni/Cu/Ag method. This is because the resulting Ni/Si alloy has outstanding electrical conductivity, and the produced Ni/Si alloy has higher adhesion over direct contact between the nickel-silicon interface, as well as enhanced surface roughness. The results showed that at an annealing temperature of 375 °C, the main compound formed was NiSi, with a contact resistance of 1 mΩ cm-2 and a maximum gate line adhesion of 2.7 N mm-1. This method proposes a new technical solution for cost reduction and efficiency improvement of n-TOPCon solar cells.

9.
Front Plant Sci ; 14: 1209910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521937

RESUMEN

Visual recognition is the most critical function of a harvesting robot, and the accuracy of the harvesting action is based on the performance of visual recognition. However, unstructured environment, such as severe occlusion, fruits overlap, illumination changes, complex backgrounds, and even heavy fog weather, pose series of serious challenges to the detection accuracy of the recognition algorithm. Hence, this paper proposes an improved YOLO v4 model, called YOLO v4+, to cope with the challenges brought by unstructured environment. The output of each Resblock_body in the backbone is processed using a simple, parameterless attention mechanism for full dimensional refinement of extracted features. Further, in order to alleviate the problem of feature information loss, a multi scale feature fusion module with fusion weight and jump connection structure was pro-posed. In addition, the focal loss function is adopted and the hyperparameters α, γ are adjusted to 0.75 and 2. The experimental results show that the average precision of the YOLO v4+ model is 94.25% and the F1 score is 93%, which is 3.35% and 3% higher than the original YOLO v4 respectively. Compared with several state-of-the-art detection models, YOLO v4+ not only has the highest comprehensive ability, but also has better generalization ability. Selecting the corresponding augmentation method for specific working condition can greatly improve the model detection accuracy. Applying the proposed method to harvesting robots may enhance the applicability and robustness of the robotic system.

10.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231934

RESUMEN

High-performance flexible actuators, integral components of soft robotics, hold promise for advancing applications in safe human-robot interactions, healthcare, and various other fields. Notable among these actuators are flexible electrochemical systems, recognized for their merits in low-voltage manipulation, rapid response speed, and cost-effectiveness. However, the optimization of output strain, response speed, and stability presents a significant challenge in this domain. Despite the application of diverse electrochemically active materials to enhance actuation performance, a critical need persists for corresponding electrical-mechanical models to comprehensively grasp actuation mechanisms. In this study, we introduce a novel electrochemical actuator that utilizes conductive polymer ionogel as active electrodes. This ionogel exhibits exceptional properties, including high conductivity, flexibility, and electrochemical activity. Our electrochemical actuators exhibit noteworthy bending strain capabilities and rapid response rates, achieving frequencies up to 10 Hz at a modest voltage of 1 V. An analytical model integrating ion migration and dynamic processes has been established to elucidate actuator behavior. Simulation results highlight that electrodes characterized by low resistance and high capacitance are optimal for simultaneous enhancement of bending strain and blocking force. However, the augmentation of Young's modulus, while increasing blocking force, compromises bending strain. Furthermore, a larger aspect ratio proves beneficial for unidirectional stress output, leading to increased bending strain, while actuator blocking force diminishes with greater length. These findings underscore the intricate interplay between material properties and dimensions in optimizing the performance of flexible electrochemical actuators. This work provides important practical and theoretical guidance for the manufacture of high-performance flexible actuators and the search for new smart materials.

11.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37631489

RESUMEN

Multifunctional fiber materials play a key role in the field of smart textiles. Temperature sensing and active thermal management are two important functions of smart fabrics, but few studies have combined both functions in a single fiber material. In this work, we demonstrate a temperature-sensing and in situ heating functionalized conductive polymer microfiber by exploiting its high electrical conductivity and thermoelectric properties. The conductive polymer microfibers were prepared by wet-spinning the PEDOT:PSS aqueous dispersion with ionic liquid additives, which was used to enhance the electrical and mechanical properties of the final microfibers. The thermoelectric properties of these microfibers were further studied. Due to their excellent flexibility and mechanical properties, these fibers can be easily integrated into commercial fabrics for the manufacture of smart textiles through knitting. We further demonstrated a smart glove with integrated temperature-sensing and in situ heating functions, and further explored thermoelectric fiber-based temperature-sensing array fabric. These works combine the thermoelectric properties and heating function of conductive polymer fibers, providing new insights that enable further development of high-performance, multifunctional wearable smart textiles.

12.
ACS Appl Mater Interfaces ; 15(46): 54119-54128, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942537

RESUMEN

The capture and utilization of underwater fuel bubbles such as methane can alleviate the greenhouse effect, solve the global energy crisis, and possibly improve the endurance of underwater equipment. However, previous research routinely failed to achieve the integrated process of continuous adsorption, transportation, and collection of bubbles limited by the trade-off between the bubble adhesion and transport efficiency dependent on interfacial pinning, tremendously hindering the direct capture and utilization of underwater fuel bubbles. To break through this bottleneck, a magnetic-guided conical arrayed surface (CAS) associated with a laser etching technique is fabricated conveniently to realize superhydrophobicity. The bubbles on laser-etched CAS have higher adhesiveness and low-pinning transport compared with those on the nonlaser-etched surface. Intriguingly, the gas film adsorbed within the CAS seems to be a gas channel, which accelerates the bubble coalescence and fast spreading to eventually realize the integration of transport, coalescence, and collection. The dynamic behaviors of bubble adsorption, transportation, and coalescence on CAS are probed to reveal the mechanism of the gas film-generating process within conical arrays. Furthermore, a novel underwater bubble-collecting device with multiangled CAS is proposed to achieve multidirectional capture, highly efficient transportation, and collection of rising bubbles. The results advance our understanding of dynamic behaviors of bubbles at solid-liquid interfaces and facilitate design and manufacturing of an apparatus for bubble collection.

13.
Chem Commun (Camb) ; 59(85): 12723-12726, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37798956

RESUMEN

A 5-nm-thick artificial solid electrolyte interface (SEI) was engineered for the hard carbon anodes of sodium-ion batteries. Benefiting from the artificial SEI, the hard carbon anode shows a significantly improved initial Coulombic efficiency of 94% and superior rate performance with a reversible capacity of 247 mA h g-1 after 800 cycles at 1C, 220 mA h g-1 after 400 cycles at 6C.

14.
Microsyst Nanoeng ; 9: 119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780811

RESUMEN

The manipulation of fast, unidirectional motion for large droplets shows important applications in the fields of fog collection and biochemical reactions. However, driving large droplets (>5 µL) to move directionally and quickly remains challenging due to the nonnegligible volume force. Herein, we fabricated a scalable, bionic peristome substrate with a microcavity width of 180 µm using a 3D printing method, which could unidirectionally drive a large water droplet (~8 µL) at a speed reaching 12.5 mm/s by temperature-responsive wettability. The substrate surface was grafted with PNIPAAm, which could reversibly change its wettability in response to temperature, thereby enabling a temperature-responsive smart surface that could regulate droplet movement in real-time by changing the temperature. A series of temperature-responsive smart patterns were designed to induce water transport along specific paths to further realize controllable droplet motion with the antibacterial treatment of predesignated areas. The ability to achieve temperature-responsive unidirectional motion and dynamic control of droplet movement could allow programmable fluidic biosensors and precision medical devices. A temperature-responsive smart surface was produced to control the unidirectional motion of large droplets between spreading and pinning movement by changing the surface wettability.

15.
RSC Adv ; 13(40): 27839-27864, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37731827

RESUMEN

With the increasing shortage of water resources, people are seeking more innovative ways to collect fog to meet the growing need for production and the demand for livelihood. It has been proven that fog collection is efficient for collecting water in dry but foggy areas. As a hot research topic in recent years, bionic surfaces with fog collection functions have attracted widespread attention in practical applications and basic research. By studying natural organisms and bionic surfaces, more avenues are provided for the development of fog collection devices. Firstly, starting from biological prototypes, this article explored the structural characteristics and fog collection mechanisms of natural organisms such as spider silk, desert beetles, cactus, Nepenthes and other animals and plants (Sarracenia, shorebird and wheat awn), revealing the fog collection mechanism of the natural organisms based on microstructures. Secondly, based on the theory of interfacial tension, we would delve into the fog collection function's theoretical basis and wetting model, expounding the fog collection mechanism from a theoretical perspective. Thirdly, a detailed introduction was given to prepare bionic surfaces and recently explore fog collection devices. For bionic surfaces of a single biological prototype, the fog collection efficiency is about 2000-4000 mg cm-2 h-1. For bionic surfaces of multiple biological prototypes, the fog collection efficiency reaches 7000 mg cm-2 h-1. Finally, a critical analysis was conducted on the current challenges and future developments, aiming to promote the next generation of fog collection devices from a scientific perspective from research to practical applications.

16.
Small Methods ; 6(8): e2200588, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35733078

RESUMEN

Sensors as the significant units of the Internet of Things play an important role in the field of information interaction. Non-contact sensors have the advantages of flexible manipulation and a longer lifespan but it is constrained in motion detection due to their relative single detection function. Herein, a self-powered non-contact motion vector sensor (NMVS) for the multifunctional human-machine interface is reported. Based on the electrostatic induction effect, the motion vector is measured according to the output electrical signals from the non-contact triboelectric nanogenerator (NC-TENG). By simulation analysis and experimental validation, the output characteristics of NC-TENG dependence on structural and motion parameters are investigated in detail. On this basis, the resolution of NMVS is improved and exhibits for non-contact micro-vibration monitoring, rehabilitation gait detection, contactless smart lock, and the non-contact limit alarm. This work not only proposes an ingenious strategy for non-contact motion vector detection but also demonstrates the promising prospects of a multifunctional human-machine interface in intelligent electronics, health rehabilitation, and industrial inspection.


Asunto(s)
Suministros de Energía Eléctrica , Nanotecnología , Electricidad , Electrónica , Humanos , Movimiento (Física)
17.
Nanoscale ; 14(43): 16185-16192, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36278850

RESUMEN

Carbon nanotube (CNT) yarns generate electrical energy when they were stretched in an electrolyte, and they have been exploited for diverse applications such as self-powered sensors and human health monitoring systems. Here we improved the capacitance change and harvester performance of a coiled CNT yarn by using an incandescent tension annealing process (ITAP). When undergoing stretching cycles at 1 Hz, a coiled ITAP yarn can produce 2.5 times peak electrical power and 1.6 times output voltage than that of a neat CNT yarn. Electrochemical analysis shows that the capacitance of the ITAP yarn decreased by 20.4% when it was stretched to 30% strain. Microstructure results demonstrate that the large capacitance change may result from the densified electrochemical surface by the ITAP. Moreover, the potential of the zero charge (PZC) of ITAP yarns was shifted to a more negative value than that of the neat CNT yarn, which means that more charges were injected into the ITAP yarn once it was immersed in an electrolyte. Thus, the large capacitance change and initial injected charge are two main reasons for enhancing the harvester performance of the ITAP yarn. In addition, by annealing a twisted CNT yarn before it was coiled, we further increased the output peak power density to 170 W kg-1 at a strain of 55%.

18.
Nanoscale ; 14(46): 17466, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398562

RESUMEN

Correction for 'Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures' by Xinghao Hu et al., Nanoscale, 2022, 14, 16185-16192, https://doi.org/10.1039/D2NR05303A.

19.
Nanoscale ; 13(17): 8304-8312, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899842

RESUMEN

Mechanical energy harvesters are widely studied because of their diverse applications, such as harvesting ocean wave energy, self-powered wireless sensors, portable power supplies and so on. To be feasible, an energy harvester needs to provide a high output current and voltage, in addition to being environmentally friendly. Hence, in this study, a new energy harvester is developed via reversible deformation of a three-dimensional graphene aerogel which was immersed in a salt solution. The movement of solvated ions in the diffusion layer during the squeezing of the electrode induced the transmission of electrons out of graphene, resulting in electrical energy. The developed harvester can supply a power density of 11.7 W kg-1 and an energy density of 14.3 J kg-1, in addition to achieving a high energy conversion efficiency of approximately 43.2%. The device can also generate a high open-circuit voltage and short-circuit current when an external compression strain is applied. Moreover, it can be easily scaled up by being connected in series with multiple harvesters. Thus, the proposed energy harvester can not only be widely used for harvesting ocean wave energy, but also for adsorbing pollutants to prevent the pollution of ocean environments.

20.
ACS Appl Mater Interfaces ; 12(5): 6460-6470, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31942793

RESUMEN

Light-driven actuators that directly convert light into mechanical work have attracted significant attention due to their wireless advantage and ability to be easily controlled. However, a fundamental impediment to their application is that the continuous motion of light-driven flexible actuators usually requires a periodically switching light source or the coordination of other additional hardware. Here, for the first time, continuous flapping-wing motion under sunlight is realized through the utilization of a simple nanocrystalline metal polymer bilayer structure without the coordination of additional hardware. The light-driven performance can be controlled by adjusting the grain size of the upper nanocrystalline metallic layer or selecting metals with different thermodynamic parameters. The achieved highest frequency of flapping-wing motion is 4.49 Hz, which exceeds the frequency of real butterfly wings, thus informing the further development of sunlight-driven bionic flying animal robotics without external energy consumption. The flapping-wing motion has been used to realize a light-driven whirligig, a light-driven sailboat, and photoelectric energy harvesting. Furthermore, the flexible bilayer actuator features the ability to be driven by light and electricity, low-power actuation, a large deflection, fast actuation speed, long-time stability, strong design ability, and large-area facile fabrication. The bilayer film considered herein represents a simple, general, and effective strategy for preparing photoelectric-driven flexible actuators with target performances and informs the standardization and industrial application of flexible actuators in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA