Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(5): 1207-1212, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096421

RESUMEN

Neuroendocrine mechanisms underlying social inhibition of puberty are not well understood. Here, we use a model exhibiting the most profound case of pubertal suppression among mammals to explore a role for RFamide-related peptide-3 [RFRP-3; mammalian ortholog to gonadotropin-inhibitory hormone (GnIH)] in neuroendocrine control of reproductive development. Naked mole rats (NMRs) live in sizable colonies where breeding is monopolized by two to four dominant animals, and no other members exhibit signs of puberty throughout their lives unless they are removed from the colony. Because of its inhibitory action on the reproductive axis in other vertebrates, we investigated the role of RFRP-3 in social reproductive suppression in NMRs. We report that RFRP-3 immunofluorescence expression patterns and RFRP-3/GnRH cross-talk are largely conserved in the NMR brain, with the exception of the unique presence of RFRP-3 cell bodies in the arcuate nucleus (Arc). Immunofluorescence comparisons revealed that central expression of RFRP-3 is altered by reproductive status, with RFRP-3 immunoreactivity enhanced in the paraventricular nucleus, dorsomedial nucleus, and Arc of reproductively quiescent NMRs. We further observed that exogenous RFRP-3 suppresses gonadal steroidogenesis and mating behavior in NMRs given the opportunity to undergo puberty. Together, our findings establish a role for RFRP-3 in preserving reproductive immaturity, and challenge the view that stimulatory peptides are the ultimate gatekeepers of puberty.


Asunto(s)
Sistema Límbico/metabolismo , Ratas Topo/fisiología , Neuropéptidos/fisiología , Maduración Sexual/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/fisiología , Inyecciones Intraventriculares , Kisspeptinas/metabolismo , Masculino , Neuropéptidos/farmacología , Ovario/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Progesterona/biosíntesis , Progesterona/sangre , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Maduración Sexual/efectos de los fármacos , Aislamiento Social , Testículo/metabolismo , Testosterona/biosíntesis , Testosterona/sangre
2.
Nature ; 480(7376): 209-14, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22080954

RESUMEN

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Folículo Piloso/citología , Células Madre/citología , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Adhesión Celular/genética , Ciclo Celular/genética , Células Cultivadas , Senescencia Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Señales (Psicología) , Femenino , Regulación de la Expresión Génica/genética , Homeostasis/genética , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Nicho de Células Madre , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/genética , Vía de Señalización Wnt/genética
3.
PLoS Genet ; 10(10): e1004695, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25330117

RESUMEN

The suprachiasmatic nucleus (SCN) acts as the central clock to coordinate circadian oscillations in mammalian behavior, physiology and gene expression. Despite our knowledge of the circadian transcriptome of the SCN, how it impacts genome-wide protein expression is not well understood. Here, we interrogated the murine SCN proteome across the circadian cycle using SILAC-based quantitative mass spectrometry. Of the 2112 proteins that were accurately quantified, 20% (421 proteins) displayed a time-of-day-dependent expression profile. Within this time-of-day proteome, 11% (48 proteins) were further defined as circadian based on a sinusoidal expression pattern with a ∼24 h period. Nine circadianly expressed proteins exhibited 24 h rhythms at the transcript level, with an average time lag that exceeded 8 h. A substantial proportion of the time-of-day proteome exhibited abrupt fluctuations at the anticipated light-to-dark and dark-to-light transitions, and was enriched for proteins involved in several key biological pathways, most notably, mitochondrial oxidative phosphorylation. Additionally, predicted targets of miR-133ab were enriched in specific hierarchical clusters and were inversely correlated with miR133ab expression in the SCN. These insights into the proteomic landscape of the SCN will facilitate a more integrative understanding of cellular control within the SCN clock.


Asunto(s)
Ritmo Circadiano/fisiología , Proteoma/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Regulación de la Expresión Génica , Luz , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteómica/instrumentación , Proteómica/métodos , Transcriptoma
4.
J Neurosci ; 35(16): 6444-51, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904795

RESUMEN

Polyglutamine (polyQ) expansion of the androgen receptor (AR) causes Kennedy's disease/spinobulbar muscular atrophy (KD/SBMA) through poorly defined cellular mechanisms. Although KD/SBMA has been thought of as a motor neuron disease, recent evidence indicates a key role for skeletal muscle. To resolve which early aspects of the disease can be caused by neurogenic or myogenic mechanisms, we made use of the tet-On and Cre-loxP genetic systems to selectively and acutely express polyQ AR in either motor neurons (NeuroAR) or myocytes (MyoAR) of transgenic mice. After 4 weeks of transgene induction in adulthood, deficits in gross motor function were seen in NeuroAR mice, but not MyoAR mice. Conversely, reduced size of fast glycolytic fibers and alterations in expression of candidate genes were observed only in MyoAR mice. Both NeuroAR and MyoAR mice exhibited reduced oxidative capacity in skeletal muscles, as well as a shift in fast fibers from oxidative to glycolytic. Markers of oxidative stress were increased in the muscle of NeuroAR mice and were reduced in motor neurons of both NeuroAR and MyoAR mice. Despite secondary pathology in skeletal muscle and behavioral deficits, no pathological signs were observed in motor neurons of NeuroAR mice, possibly due to relatively low levels of polyQ AR expression. These results indicate that polyQ AR in motor neurons can produce secondary pathology in muscle. Results also support both neurogenic and myogenic contributions of polyQ AR to several acute aspects of pathology and provide further evidence for disordered cellular respiration in KD/SBMA skeletal muscle.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/patología , Células Musculares/patología , Trastornos Musculares Atróficos/patología , Animales , Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Destreza Motora , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Musculares Atróficos/genética , Estrés Oxidativo/genética , Receptores Androgénicos/genética
5.
Hum Mol Genet ; 20(4): 731-51, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21118894

RESUMEN

Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Ritmo Circadiano/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Biología Computacional , Proteínas de Unión al ADN , Proteína p300 Asociada a E1A/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Histona Demetilasas con Dominio de Jumonji , Luz , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Estabilidad del ARN , Proteína 2 de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Núcleo Supraquiasmático/metabolismo , Proteínas Supresoras de Tumor/metabolismo
6.
Mol Cell Proteomics ; 10(11): M110.007252, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21859948

RESUMEN

In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 µg and 200 µg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.


Asunto(s)
Automatización de Laboratorios , Relojes Circadianos , Luz , Proteoma/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Bovinos , Cromatografía Liquida/normas , Expresión Génica/efectos de la radiación , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas , Proteoma/genética , Proteoma/aislamiento & purificación , Albúmina Sérica Bovina/normas , Núcleo Supraquiasmático/efectos de la radiación , Espectrometría de Masas en Tándem/normas
7.
Neuron ; 54(5): 813-29, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17553428

RESUMEN

microRNAs (miRNAs) are a class of small, noncoding RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system have not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK and BMAL1 complex, exhibits robust circadian rhythms of expression, and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock-gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment.


Asunto(s)
Relojes Biológicos/genética , Química Encefálica/genética , Ritmo Circadiano/genética , MicroARNs/genética , Fotoperiodo , Núcleo Supraquiasmático/metabolismo , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos/efectos de la radiación , Proteínas CLOCK , Línea Celular , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estimulación Luminosa , Núcleo Supraquiasmático/anatomía & histología , Núcleo Supraquiasmático/efectos de la radiación , Transactivadores/genética , Transactivadores/metabolismo , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
8.
Hum Mol Genet ; 18(16): 3110-24, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19477955

RESUMEN

The suprachiasmatic nuclei (SCN) of the mammalian hypothalamus function as the master circadian clock, coordinating the timing of diverse cell populations and organ systems. Dysregulation of clock timing is linked to a broad range of human conditions, including obesity, cardiovascular disease and a wide spectrum of neurological disorders. Aberrant regulation of expression of the PERIOD genes has been associated with improper cell division and human cancers, while the autosomal dominant disorder familial advanced sleep phase syndrome has been mapped to a single missense mutation within the critical clock gene hPERIOD2. An essential tool to begin to dissect the inherent molecular timing process is the clock gene reporter. Here, we functionally characterize two new mouse transgenic clock reporters, mPeriod1-Venus and mPeriod2-DsRED. Venus and DsRED are fluorescent proteins that can be used to monitor transcription in individual cells in real-time. Imaging of the SCN revealed oscillations, as well as light inducibility, in Venus and DsRED expression. Rhythmic Venus and DsRED expression was observed in distinct SCN cell populations, suggesting the existence of discrete cellular SCN clocks. Outside of the SCN, mPeriod1-Venus expression was broadly expressed in neuronal and non-neuronal populations. Conversely, mPeriod2-DsRED was expressed in glial populations and progenitor cells of the dentate gyrus; limited expression was detected in neurons. This distinct expression pattern of the two reporters reveals that the central nervous system possesses mechanistically distinct subpopulations of neuronal and non-neuronal cellular clocks. These novel mouse models will facilitate our understanding of clock timing and its role in human diseases.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Encéfalo/citología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Ritmo Circadiano/efectos de la radiación , Expresión Génica/efectos de la radiación , Genes Reporteros , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Luz , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Factores de Transcripción/metabolismo
9.
Nat Cell Biol ; 6(3): 215-26, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15039780

RESUMEN

During the development of multicellular organisms, concerted actions of molecular signalling networks determine whether cells undergo proliferation, differentiation, death or ageing. Here we show that genetic inactivation of the stress signalling kinase, MKK7, a direct activator of JNKs in mice, results in embryonic lethality and impaired proliferation of hepatocytes. Beginning at passage 4-5, mkk7(-/-) mouse embryonic fibroblasts (MEFs) display impaired proliferation, premature senescence and G2/M cell cycle arrest. Similarly, loss of c-Jun or expression of a c-JunAA mutant in which the JNK phosphorylation sites were replaced with alanine results in a G2/M cell-cycle block. The G2/M cell-cycle kinase CDC2 was identified as a target for the MKK7-JNK-c-Jun pathway. These data show that the MKK7-JNK-c-Jun signalling pathway couples developmental and environmental cues to CDC2 expression, G2/M cell cycle progression and cellular senescence in fibroblasts.


Asunto(s)
Senescencia Celular/genética , Fase G2/genética , Hepatocitos/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/deficiencia , Mitosis/genética , Estrés Fisiológico/enzimología , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Feto , Fibroblastos/citología , Fibroblastos/enzimología , Genes Letales/genética , Hepatocitos/citología , Proteínas Quinasas JNK Activadas por Mitógenos , Hígado/anomalías , Hígado/patología , MAP Quinasa Quinasa 7 , Sistema de Señalización de MAP Quinasas/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Fosforilación , Proteínas Proto-Oncogénicas c-jun/deficiencia , Proteínas Proto-Oncogénicas c-jun/genética , Estrés Fisiológico/genética
10.
Proc Natl Acad Sci U S A ; 105(26): 9093-8, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18577589

RESUMEN

Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway. Introduction of miR132 into hippocampal neurons enhanced dendrite morphogenesis whereas inhibition of miR132 by 2'O-methyl RNA antagonists blocked these effects. Furthermore, neuronal activity inhibited translation of p250GAP, a miR132 target, and siRNA-mediated knockdown of p250GAP mimicked miR132-induced dendrite growth. Experiments using dominant-interfering mutants suggested that Rac signaling is downstream of miR132 and p250GAP. We propose that the miR132-p250GAP pathway plays a key role in activity-dependent structural and functional plasticity.


Asunto(s)
Dendritas/metabolismo , Regulación hacia Abajo/genética , Proteínas Activadoras de GTPasa/genética , MicroARNs/metabolismo , Plasticidad Neuronal , Transmisión Sináptica , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , MicroARNs/genética , Biosíntesis de Proteínas , Ratas , Ratas Sprague-Dawley
11.
Neuron ; 43(5): 715-28, 2004 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-15339652

RESUMEN

Circadian rhythms of physiology and behavior are generated by biological clocks that are synchronized to the cyclic environment by photic or nonphotic cues. The interactions and integration of various entrainment pathways to the clock are poorly understood. Here, we show that the Ras-like G protein Dexras1 is a critical modulator of the responsiveness of the master clock to photic and nonphotic inputs. Genetic deletion of Dexras1 reduces photic entrainment by eliminating a pertussis-sensitive circadian response to NMDA. Mechanistically, Dexras1 couples NMDA and light input to Gi/o and ERK activation. In addition, the mutation greatly potentiates nonphotic responses to neuropeptide Y and unmasks a nonphotic response to arousal. Thus, Dexras1 modulates the responses of the master clock to photic and nonphotic stimuli in opposite directions. These results identify a signaling molecule that serves as a differential modulator of the gated photic and nonphotic input pathways to the circadian timekeeping system.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Unión al GTP/fisiología , Células Ganglionares de la Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vías Visuales/metabolismo , Proteínas ras/fisiología , Animales , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/genética , Ácido Glutámico/metabolismo , Luz , Fototransducción/efectos de los fármacos , Fototransducción/genética , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Neuropéptido Y/metabolismo , Toxina del Pertussis/farmacología , Estimulación Luminosa , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Vías Visuales/citología , Vías Visuales/efectos de la radiación , Proteínas ras/genética
12.
J Neurol Neuromedicine ; 3(1): 21-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29682634

RESUMEN

Daily rhythms in behavior and physiology are coordinated by an endogenous clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. This central pacemaker also relays day length information to allow for seasonal adaptation, a process for which melatonin signaling is essential. How the SCN encodes day length is not fully understood. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by directing target mRNAs for degradation or translational repression. The miR-132/212 cluster plays a key role in facilitating neuronal plasticity, and miR-132 has been shown previously to modulate resetting of the central clock. A recent study from our group showed that miR-132/212 in mice is required for optimal adaptation to seasons and non-24-hour light/dark cycles through regulation of its target gene, methyl CpG-binding protein (MeCP2), in the SCN and dendritic spine density of SCN neurons. Furthermore, in the seasonal rodent Mesocricetus auratus (Syrian hamster), adaptation to short photoperiods is accompanied by structural plasticity in the SCN independently of melatonin signaling, thus further supporting a key role for SCN structural and, in turn, functional plasticity in the coding of day length. In this commentary, we discuss our recent findings in context of what is known about day length encoding by the SCN, and propose future directions.

13.
Sci Rep ; 8(1): 5294, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593295

RESUMEN

Adult hippocampal neurogenesis is highly responsive to exercise, which promotes the proliferation of neural progenitor cells and the integration of newborn granule neurons in the dentate gyrus. Here we show that genetic ablation of the small GTPase, Dexras1, suppresses exercise-induced proliferation of neural progenitors, alters survival of mitotic and post-mitotic cells in a stage-specific manner, and increases the number of mature newborn granule neurons. Dexras1 is required for exercise-triggered recruitment of quiescent neural progenitors into the cell cycle. Pharmacological inhibition of NMDA receptors enhances SGZ cell proliferation in wild-type but not dexras1-deficient mice, suggesting that NMDA receptor-mediated signaling is dependent on Dexras1. At the molecular level, the absence of Dexras1 abolishes exercise-dependent activation of ERK/MAPK and CREB, and inhibits the upregulation of NMDA receptor subunit NR2A, bdnf, trkB and vegf-a expression in the dentate gyrus. Our study reveals Dexras1 as an important stage-specific regulator of exercise-induced neurogenesis in the adult hippocampus by enhancing pro-mitogenic signaling to neural progenitor cells and modulating cell survival.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Proteínas ras/metabolismo , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ciclo Celular , Diferenciación Celular , Proliferación Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Giro Dentado/metabolismo , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Condicionamiento Físico Animal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Lóbulo Temporal/metabolismo , Proteínas ras/genética
14.
Cell Rep ; 22(5): 1124-1131, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29386101

RESUMEN

Histone variants were recently discovered to regulate neural plasticity, with H2A.Z emerging as a memory suppressor. Using whole-genome sequencing of the mouse hippocampus, we show that basal H2A.Z occupancy is positively associated with steady-state transcription, whereas learning-induced H2A.Z removal is associated with learning-induced gene expression. AAV-mediated H2A.Z depletion enhanced fear memory and resulted in gene-specific alterations of learning-induced transcription, reinforcing the role of H2A.Z as a memory suppressor. H2A.Z accumulated with age, although it remained sensitive to learning-induced eviction. Learning-related H2A.Z removal occurred at largely distinct genes in young versus aged mice, suggesting that H2A.Z is subject to regulatory shifts in the aged brain despite similar memory performance. When combined with prior evidence of H3.3 accumulation in neurons, our data suggest that nucleosome composition in the brain is reorganized with age.


Asunto(s)
Envejecimiento/metabolismo , Hipocampo/metabolismo , Histonas/metabolismo , Aprendizaje/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleosomas/metabolismo
15.
J Neurosci ; 26(50): 12984-95, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17167088

RESUMEN

The mammalian master clock, located in the suprachiasmatic nucleus (SCN), is exquisitely sensitive to photic timing cues, but the key molecular events that sculpt both the phasing and magnitude of responsiveness are not understood. Here, we show that the Ras-like G-protein Dexras1 is a critical factor in these processes. Dexras1-deficient mice (dexras1-/-) exhibit a restructured nighttime phase response curve and a loss of gating to photic resetting during the day. Dexras1 affects the photic sensitivity by repressing or activating time-of-day-specific signaling pathways that regulate extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). During the late night, Dexras1 limits the capacity of pituitary adenylate cyclase (PAC) activating peptide (PACAP)/PAC1 to affect ERK/MAPK, and in the early night, light-induced phase delays, which are mediated predominantly by NMDA receptors, are reduced as reported previously. Daytime photic phase advances are mediated by a novel signaling pathway that does not affect the SCN core but rather stimulates ERK/MAPK in the SCN shell and triggers downregulation of clock protein expression.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Estimulación Luminosa/métodos , Proteínas ras/fisiología , Animales , Conducta Animal/fisiología , Relojes Biológicos/genética , Células Cultivadas , Ritmo Circadiano/genética , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Núcleo Supraquiasmático/enzimología , Núcleo Supraquiasmático/metabolismo , Proteínas ras/genética
16.
Cell Rep ; 19(3): 505-520, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423315

RESUMEN

The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.


Asunto(s)
Adaptación Fisiológica/genética , Relojes Circadianos/genética , Dendritas/metabolismo , MicroARNs/metabolismo , Estaciones del Año , Adaptación Fisiológica/efectos de la radiación , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Relojes Circadianos/efectos de la radiación , Dendritas/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/efectos de la radiación , Luz , Masculino , Mesocricetus , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Neuronas/metabolismo , Fotoperiodo , Proteoma/metabolismo , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
17.
J Neurosci ; 25(22): 5305-13, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15930378

RESUMEN

Signaling via the p42/44 mitogen-activated protein kinase (MAPK) pathway has been shown to be a key intracellular signaling event that couples light to entrainment of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). Because many of the physiological effects of the MAPK pathway are mediated by extracellular signal-regulated kinase (ERK)-regulated kinases, it was of interest to identify kinase targets of ERK in the SCN. In this study, we examined whether mitogen- and stress-activated protein kinase 1 (MSK1) is a downstream target of ERK in the SCN and whether it couples to clock gene expression. Here we show that photic stimulation during the subjective night stimulates MSK1 phosphorylation at serine 360, an event required for robust kinase activation. Activated ERK and MSK1 were colocalized in SCN cell nuclei after photic stimulation. The in vivo administration of the MAP kinase kinase 1/2 inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene] attenuated MSK1 phosphorylation. MSK1 phosphorylation was more responsive to late-night than early-night photic stimulation, indicating that MSK1 may differentially contribute to light-induced phase advancing and phase delaying of the clock. The potential connection between pituitary adenylate cyclase-activating polypeptide (PACAP) (a regulator of clock entrainment) and MSK1 phosphorylation was examined. PACAP infusion stimulated MSK1 phosphorylation, whereas PACAP receptor antagonist infusion attenuated light-induced MSK1 phosphorylation in the SCN. In reporter gene assays, MSK1 was shown to couple to mPeriod1 via a cAMP response element-binding protein-dependent mechanism. Together, these data identify MSK1 as both a downstream target of the MAPK cascade within the SCN and a regulator of clock gene expression.


Asunto(s)
Ritmo Circadiano , Luz , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Proteínas Quinasas S6 Ribosómicas/fisiología , Núcleo Supraquiasmático/efectos de la radiación , Animales , Butadienos/farmacología , Proteínas de Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Oscuridad , Activación Enzimática , Genes Reporteros , Humanos , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Proteínas Nucleares/biosíntesis , Proteínas Circadianas Period , Fosforilación , Estimulación Luminosa , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa , Serina/metabolismo , Núcleo Supraquiasmático/metabolismo
18.
Receptors Clin Investig ; 3(1)2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27088110

RESUMEN

G protein-coupled receptor kinases (GRKs) are a family of serine/threonine protein kinases that terminate G protein-coupled receptor (GPCR) signaling by phosphorylating the receptor and inducing its internalization. In addition to their canonical function, some GRKs can phosphorylate non-GPCR substrates and regulate GPCR signaling in a kinase-independent manner. GPCRs are abundantly expressed in the suprachiasmatic nucleus (SCN), a structure in the mammalian brain that serves as the central circadian pacemaker. Various facets of circadian timekeeping are under the influence of GPCR signaling, and thus are potential targets for GRK regulation. Despite this, little attention has been given to the role of GRKs in circadian rhythms. In this research highlight, we discuss our latest findings on the functional involvement of GRK2 in mammalian circadian timekeeping in the SCN. Using grk2 knockout mice, we demonstrate that GRK2 is critical for maintaining proper clock speed and ensuring that the clock is appropriately synchronized to environmental light cycles. Although grk2 deficiency expectedly alters the expression of a key GPCR in the SCN, our study also reveals that GRK2 has a more direct function that touches the heart of the circadian clock.

19.
Cell Rep ; 12(8): 1272-88, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26279567

RESUMEN

The pacemaker properties of the suprachiasmatic nucleus (SCN) circadian clock are shaped by mechanisms that influence the expression and behavior of clock proteins. Here, we reveal that G-protein-coupled receptor kinase 2 (GRK2) modulates the period, amplitude, and entrainment characteristics of the SCN. Grk2-deficient mice show phase-dependent alterations in light-induced entrainment, slower recovery from jetlag, and longer behavioral rhythms. Grk2 ablation perturbs intrinsic rhythmic properties of the SCN, increasing amplitude and decreasing period. At the cellular level, GRK2 suppresses the transcription of the mPeriod1 gene and the trafficking of PERIOD1 and PERIOD2 proteins to the nucleus. Moreover, GRK2 can physically interact with PERIOD1/2 and promote PERIOD2 phosphorylation at Ser545, effects that may underlie its ability to regulate PERIOD1/2 trafficking. Together, our findings identify GRK2 as an important modulator of circadian clock speed, amplitude, and entrainment by controlling PERIOD at the transcriptional and post-translational levels.


Asunto(s)
Núcleo Celular/metabolismo , Relojes Circadianos/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas Circadianas Period/metabolismo , Procesamiento Proteico-Postraduccional , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Células Cultivadas , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Masculino , Ratones , Proteínas Circadianas Period/genética , Fosforilación , Unión Proteica
20.
PLoS One ; 9(8): e103103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25084275

RESUMEN

Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN), which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4), a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP)-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.


Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica , Luz , Proteínas Asociadas a Microtúbulos/genética , Núcleo Supraquiasmático/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas de Unión a Calmodulina , Línea Celular , Ritmo Circadiano/genética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fotoperiodo , Unión Proteica , Transporte de Proteínas , Proteoma , Proteómica/métodos , Reproducibilidad de los Resultados , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA