Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2308050, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072777

RESUMEN

If ideal 2D polymer (2DP) macromolecules with small pores that are similar in size to gas molecules, large areas, small thickness, and excellent membrane-forming ability are synthesized, ultimate gas separation membranes would be obtained. However, as far it is known, such ideal well-characterized 2DP macromolecules are not isolated. In this study, an ideal 2DP macromolecule is synthesized by using the successive three reactions (Glaser coupling, SCAT reaction, and the introduction of octyl groups), in which the conjugated framework structure is maintained, from a fully conjugated 1D polymer. Because this exfoliated 2DP is soluble, the macromolecular structure can be fully characterized by 1 H-NMR, GPC, SEM, AFM, and its dense membrane with no defects can be fabricated by the solvent cast method. This soluble 2DP macromolecule has very small micropores (6.0 Å) inside the macromolecule, a large area (30 × 68 nm by SEM and AFM), high molecular weight (Mn = 2.80 × 105 by GPC), and a small thickness (4.4 Å by AFM). This membrane shows the highest oxygen permselectivity exceeding Robeson's upper line because of the high molecular sieving effect of the controlled small micropores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA