Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FASEB J ; 37(6): e22995, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219526

RESUMEN

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Asunto(s)
Leucocitos Mononucleares , Linfocitos T , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Resultado del Tratamiento , Síndrome de Liberación de Citoquinas , Citocinas , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones SCID
2.
FASEB J ; 34(9): 12963-12975, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772418

RESUMEN

Immunotherapy is a powerful treatment strategy being applied to cancer, autoimmune diseases, allergies, and transplantation. Although therapeutic monoclonal antibodies (mAbs) have demonstrated significant clinical efficacy, there is also the potential for severe adverse events, including cytokine release syndrome (CRS). CRS is characterized by the rapid production of inflammatory cytokines following delivery of therapy, with symptoms ranging from mild fever to life-threating pathology and multi-organ failure. Overall there is a paucity of models to reliably and accurately predict the induction of CRS by immune therapeutics. Here, we describe the development of a humanized mouse model based on the NOD-scid IL2rgnull (NSG) mouse to study CRS in vivo. PBMC-engrafted NSG, NSG-MHC-DKO, and NSG-SGM3 mice were used to study cytokine release in response to treatment with mAb immunotherapies. Our data show that therapeutic-stimulated cytokine release in these PBMC-based NSG models captures the variation in cytokine release between individual donors, is drug dependent, occurs in the absence of acute xeno-GVHD, highlighting the specificity of the assay, and shows a robust response following treatment with a TGN1412 analog, a CD28 superagonist. Overall our results demonstrate that PBMC-engrafted NSG models are rapid, sensitive, and reproducible platforms to screen novel therapeutics for CRS.


Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Leucocitos Mononucleares/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Síndrome de Liberación de Citoquinas/inducido químicamente , Femenino , Ratones , Ratones Endogámicos NOD , Ratones SCID
3.
FASEB J ; 32(3): 1537-1549, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146734

RESUMEN

Establishment of an in vivo small animal model of human tumor and human immune system interaction would enable preclinical investigations into the mechanisms underlying cancer immunotherapy. To this end, nonobese diabetic (NOD).Cg- PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-derived xenografts [PDX; non-small cell lung cancer (NSCLC), sarcoma, bladder cancer, and triple-negative breast cancer (TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared with nonhuman immune-engrafted NSG mice. Treatment with pembrolizumab, which targets programmed cell death protein 1, produced significant growth inhibition in both CDX and PDX tumors in HuNSG but not in NSG mice. Finally, inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus, tumor-bearing HuNSG mice may represent an important, new model for preclinical immunotherapy research.-Wang, M., Yao, L.-C., Cheng, M., Cai, D., Martinek, J., Pan, C.-X., Shi, W., Ma, A.-H., De Vere White, R. W., Airhart, S., Liu, E. T., Banchereau, J., Brehm, M. A., Greiner, D. L., Shultz, L. D., Palucka, K., Keck, J. G. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/efectos de los fármacos , Inmunoterapia , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Animales , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Neoplasias/inmunología , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nanotechnology ; 27(42): 425103, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27640312

RESUMEN

Chemotherapy commonly used in the treatment of advanced bladder cancer is only moderately effective and associated with significant toxicity. There has been no appreciable improvement in overall survival over the last three decades. The goal of this project is to develop and characterize bladder cancer-specific nanometer-scale micelles loaded with the chemotherapeutic drug paclitaxel (PTX) and determine the anti-tumor activity and toxicity. Micelle-building-material telodendrimers were synthesized through the stepwise conjugation of eight cholic acid units at one terminus of polyethylene glycol (PEG) and a bladder cancer-specific targeting peptide named PLZ4 at the other terminus. To synthesize disulfide-crosslinked PLZ4 nanomicelles (DC-PNM), cysteine was introduced between the cholic acid and PEG. DC-PNM-PTX was synthesized through the evaporation method by loading PTX in the core. The loading capacity of PTX in DC-PNM was 25% (W/W). The loading efficiency was over 99%. DC-PNM-PTX was spherical with the median size of 25 nm. The stability of DC-PNM-PTX was determined in a solution containing sodium docecyl sulfate (SDS). It was stable in a SDS solution, but dissolved within 5 min after the addition of glutathione at the physiological intracellular concentration of 10 mM. In vivo targeting and anti-tumor activity were determined in immunodeficient mice carrying patient-derived bladder cancer xenografts (PDXs). After intravenous administration, DC-PNM specifically targeted the bladder cancer PDXs, but very little to the lung cancer xenografts in the same mice (p < 0.001). DC-PNM loaded with PTX overcame cisplatin resistance, and improved the median survival from 55 d with free PTX to 69.5 d (p = 0.03) of mice carrying PDXs. In conclusion, DC-PNM remained stable in the SDS solution, specifically targeted the bladder cancer xenografts in vivo, and improved the anti-cancer efficacy of PTX.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , Antineoplásicos Fitogénicos , Línea Celular Tumoral , Disulfuros , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Ratones , Micelas , Paclitaxel , Polietilenglicoles
5.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36069866

RESUMEN

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Modelos Animales de Enfermedad
6.
Sarcoma ; 2020: 6312480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565715

RESUMEN

Nonrhabdomyosarcoma soft-tissue sarcomas (STSs) are a class of 50+ cancers arising in muscle and soft tissues of children, adolescents, and adults. Rarity of each subtype often precludes subtype-specific preclinical research, leaving many STS patients with limited treatment options should frontline therapy be insufficient. When clinical options are exhausted, personalized therapy assignment approaches may help direct patient care. Here, we report the results of an adult female STS patient with relapsed undifferentiated pleomorphic sarcoma (UPS) who self-drove exploration of a wide array of personalized Clinical Laboratory Improvement Amendments (CLIAs) level and research-level diagnostics, including state of the art genomic, proteomic, ex vivo live cell chemosensitivity testing, a patient-derived xenograft model, and immunoscoring. Her therapeutic choices were also diverse, including neoadjuvant chemotherapy, radiation therapy, and surgeries. Adjuvant and recurrence strategies included off-label and natural medicines, several immunotherapies, and N-of-1 approaches. Identified treatment options, especially those validated during the in vivo study, were not introduced into the course of clinical treatment but did provide plausible treatment regimens based on FDA-approved clinical agents.

7.
Methods Mol Biol ; 1953: 241-252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30912026

RESUMEN

A significant obstacle to the study of human cancer biology and the testing of human specific immunotherapeutics is the paucity of translational models that recapitulate both the growth of human tumors and the functionality of human immune systems. Humanized mice engrafted with human hematopoietic stem cells (HSC) and patient-derived xenografts (PDX) enable preclinical investigation of the interactions between the human immune system and human cancer. We use immunodeficient non-obese diabetic (NOD, scid, gamma) NSG™ or NSG™-SGM3 mice as hosts for establishment of human immunity following HSC injection and for engraftment of human tumors. Here we describe a refined protocol for the subcutaneous implant of solid PDX tumors into humanized mice. Protocols to recover infiltrating immune cells from growing tumors and to evaluate the immune cell subsets by flow cytometry are also described.


Asunto(s)
Trasplante de Neoplasias/métodos , Neoplasias/inmunología , Trasplante Heterólogo/métodos , Animales , Citometría de Flujo/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inmunidad , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/patología
8.
Mol Cancer Ther ; 17(5): 885-896, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483211

RESUMEN

EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Piperazinas/farmacología , Acrilamidas , Compuestos de Anilina , Animales , Células COS , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Chlorocebus aethiops , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Exones/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones SCID , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Adv Sci (Weinh) ; 4(11): 1700261, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29201623

RESUMEN

With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin-based metal-organic framework nanocrystals (MOF-525). The MOF-525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF-525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10-6-270 × 10-6 m and the detection limit is estimated to be 0.04 × 10-6 m with high selectivity toward DA. Additionally, a real-time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5-25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing.

10.
Mol Cancer Ther ; 16(7): 1435-1442, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28468778

RESUMEN

Developing realistic preclinical models using clinical samples that mirror complex tumor biology and behavior are vital to advancing cancer research. While cell line cultures have been helpful in generating preclinical data, the genetic divergence between these and corresponding primary tumors has limited clinical translation. Conversely, patient-derived xenografts (PDX) in colorectal cancer are highly representative of the genetic and phenotypic heterogeneity in the original tumor. Coupled with high-throughput analyses and bioinformatics, these PDXs represent robust preclinical tools for biomarkers, therapeutic target, and drug discovery. Successful PDX engraftment is hypothesized to be related to a series of anecdotal variables namely, tissue source, cancer stage, tumor grade, acquisition strategy, time to implantation, exposure to prior systemic therapy, and genomic heterogeneity of tumors. Although these factors at large can influence practices and patterns related to xenotransplantation, their relative significance in determining the success of establishing PDXs is uncertain. Accordingly, we systematically examined the predictive ability of these factors in establishing PDXs using 90 colorectal cancer patient specimens that were subcutaneously implanted into immunodeficient mice. Fifty (56%) PDXs were successfully established. Multivariate analyses showed tissue acquisition strategy [surgery 72.0% (95% confidence interval (CI): 58.2-82.6) vs. biopsy 35% (95% CI: 22.1%-50.6%)] to be the key determinant for successful PDX engraftment. These findings contrast with current empiricism in generating PDXs and can serve to simplify or liberalize PDX modeling protocols. Better understanding the relative impact of these factors on efficiency of PDX formation will allow for pervasive integration of these models in care of colorectal cancer patients. Mol Cancer Ther; 16(7); 1435-42. ©2017 AACR.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Ratones , Estadificación de Neoplasias
11.
Brain Res ; 947(2): 191-8, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12176160

RESUMEN

Stroke is the third leading cause of death in the US, with a prevalence of 750,000 patients per year, and a social cost estimated at $50 billion. Current therapeutics are targeted at restoring blood flow rather than on preventing the actual mechanisms associated with neuronal cell death. Here, we show that, following transient (2 h) middle cerebral artery occlusion (tMCAO) in male, Wistar rats, neuronal damage determined using MAP-2 staining increased progressively after the tMCAO. Notably, such neuronal degeneration was first associated with a decrease in p-Akt in both the focus and penumbra of the infarct region and, later with an increase in cytosolic cytochrome C levels in cortical neurons in the infarct area. These findings implicate that Akt alterations and consequent release of cytochrome C are involved in neuronal death. To further address this issue, NXY-059 (disodium 4-[(tert.-butylimino)methyl]benzene-1,3-disulfonate N-oxide) administered i.v. (30 mg/kg bolus, followed by 30 mg/kg/h infusion for up to 24 h), commencing 1 h after reperfusion, not only prevented the increase in infarct area but also attenuated the postreperfusion increase in neuronal cytosolic cytochrome C and the postperfusion decrease in neuronal p-Akt. Thus, NXY-059, by preventing mitochondrial cytochrome C release by maintaining activation of the Akt pathway, appears to protect neurons from damage after ischemia.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Encéfalo/efectos de los fármacos , Grupo Citocromo c/metabolismo , Fármacos Neuroprotectores/farmacología , Óxidos de Nitrógeno/farmacología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Animales , Bencenosulfonatos , Western Blotting , Isquemia Encefálica/patología , Muerte Celular , Regulación hacia Abajo/efectos de los fármacos , Inmunohistoquímica , Masculino , Arteria Cerebral Media , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Anticancer Res ; 29(10): 3845-55, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19846918

RESUMEN

BACKGROUND: DNA-damaging agents are widely used for the treatment of human malignancies. Agents containing the multifunctional alkylating moiety tetrakis(2-chloroethyl)phosphorodiamidic acid are currently under development as cancer therapeutics. MATERIALS AND METHODS: TLK58747, a phophorodiamidate-based prodrug, was tested in vivo for antitumor efficacy and safety. The in vitro responses of tumor cells to TLK58747 were examined by cytotoxicity assays, cell cycle analysis, immunoblots and microscopy. RESULTS: TLK58747 was efficacious in xenograft models of human breast, pancreas, and prostate cancer, as well as in leukemia and glioma. It caused less bone marrow suppression in rats than did cyclophosphamide. In vitro, TLK58747 inhibited the growth of a wide variety of cancer cells and activated the DNA damage-response pathway, leading to G(2)/M cell cycle arrest and subsequent premature senescence or apoptosis. CONCLUSION: TLK58747 is a promising new alkylating agent with broad antitumor activity and superior safety that warrants further development.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Daño del ADN , ADN de Neoplasias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Profármacos/farmacología , Animales , Antineoplásicos Alquilantes/toxicidad , División Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , ADN de Neoplasias/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fase G2/efectos de los fármacos , Células HL-60 , Humanos , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Compuestos Organofosforados/toxicidad , Profármacos/toxicidad , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Med Chem ; 51(19): 6173-87, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18788731

RESUMEN

A novel series of symmetrical ureas of [(7-amino(2-naphthyl))sulfonyl]phenylamines were designed, synthesized, and tested for their ability to increase glucose transport in mouse 3T3-L1 adipocytes, a surrogate readout for activation of the insulin receptor (IR) tyrosine kinase (IRTK). A structure-activity relationship was established that indicated glucose transport activity was dependent on the presence of two acidic functionalities, two sulfonamide linkages, and a central urea or 2-imidazolidinone core. Compound 30 was identified as a potent and selective IRTK activator. At low concentrations, 30 was able to increase the tyrosine phosphorylation of the IR stimulated by submaximal insulin. At higher concentrations, 30 was able to increase tyrosine the phosphorylation levels of the IR in the absence of insulin. When administered intraperitoneally (ip) and orally (po), 30 improved glucose tolerance in hypoinsulinemic, streptozotocin-treated rats. These data provide pharmacological validation that small molecule IRTK activators represent a potential new class of antidiabetic agents.


Asunto(s)
Compuestos de Anilina/farmacología , Diseño de Fármacos , Receptor de Insulina/efectos de los fármacos , Sulfonamidas/farmacología , Urea/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Administración Oral , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Animales , Sitios de Unión , Glucemia/análisis , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fibroblastos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inyecciones Intraperitoneales , Masculino , Ratones , Estructura Molecular , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Estreptozocina/administración & dosificación , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Urea/análogos & derivados , Urea/química
14.
J Cell Biochem ; 92(6): 1234-45, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15258906

RESUMEN

Protease inhibitor (PI) therapy for the treatment of patients infected with human immunodeficiency virus is frequently associated with insulin resistance and diabetic complications. These adverse effects of PI treatment result to a large extent from their inhibition of insulin-stimulated glucose transport. Insulin receptor (IR) activators that enhance the insulin signaling pathway could be effective in treating this resistance. However, there are no agents reported that reverse inhibition of insulin action by PIs. Herein, we describe the effects of TLK19781. This compound is a non-peptide, small molecule, activator of the IR. We now report in cultured cells, made insulin resistant HIV by PI treatment, that TLK19781 both increased the content of insulin-stimulated GLUT4 at the plasma membrane, and enhanced insulin-stimulated glucose transport. In addition, oral administration of TLK19781 with the PI, indinavir improved glucose tolerance in rats made insulin resistant. These results suggest, therefore, that IR activators such as TLK19781 may be useful in treating the insulin resistance associated with PIs.


Asunto(s)
Inhibidores de la Proteasa del VIH/farmacología , Indinavir/farmacología , Resistencia a la Insulina , Naftalenos/farmacología , Receptor de Insulina/agonistas , Ácidos Sulfanílicos/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Administración Oral , Animales , Transporte Biológico , Receptores ErbB/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4 , Inhibidores de la Proteasa del VIH/administración & dosificación , Inhibidores de la Proteasa del VIH/efectos adversos , Técnicas In Vitro , Indinavir/administración & dosificación , Indinavir/efectos adversos , Ratones , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/metabolismo , Naftalenos/administración & dosificación , Fosforilación , Ratas , Receptor de Insulina/metabolismo , Ácidos Sulfanílicos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA