Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298269

RESUMEN

Tumor cell-derived prostaglandin E2 (PGE2) is a tumor cell-intrinsic factor that supports immunosuppression in the tumor microenvironment (TME) by acting on the immune cells, but the impact of PGE2 signaling in tumor cells on immunosuppressive TME is unclear. We demonstrate that deleting the PGE2 synthesis enzyme or disrupting autocrine PGE2 signaling through EP4 receptors on tumor cells reverses the T cell-low, myeloid cell-rich TME, activates T cells, and suppresses tumor growth. Knockout (KO) of Ptges (the gene encoding PGE2 synthesis enzyme mPGES-1) or the EP4 receptor gene (Ptger4) in KPCY (KrasG12D/P53R172H/Yfp/CrePdx) pancreatic tumor cells abolished growth of implanted tumors in a T cell-dependent manner. Blockade of the EP4 receptor in combination with immunotherapy, but not immunotherapy alone, induced complete tumor regressions and immunological memory. Mechanistically, Ptges and Ptger4 KO tumor cells exhibited altered T and myeloid cell attractant chemokines, became more susceptible to TNF-α killing, and exhibited reduced adenosine synthesis. In hosts treated with an adenosine deaminase inhibitor, Ptger4 KO tumor cells accumulated adenosine and gave rise to tumors. These studies reveal an unexpected finding - a non-redundant role for the autocrine mPGES1-PGE2-EP4 signaling axis in pancreatic cancer cells - further nominating mPGES-1 inhibition and EP4 blockade as immune-sensitizing therapy in cancer.

2.
Trends Cancer ; 9(11): 928-936, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37524642

RESUMEN

The 40-year desire to target the mutant Kirsten rat sarcoma (KRAS) gene (mKRAS) therapeutically is being realized with more and more broadly applicable and tumor-specific small-molecule inhibitors. Immunologically, mKRAS has equal desirability as a target. Tumor KRAS signaling plays a large role in shaping the immunosuppressive nature of the tumor microenvironment, especially in pancreatic cancer, leaving mKRAS inhibitors with potentially powerful immune modulatory capabilities that could be exploited in immunological-oncological combinations. mKRAS is itself an immunological antigen, a 'shared neoepitope' linked to the oncogenic process, validated biochemically and immunologically. Novel approaches in the clinic are taking advantage of the fact that mKRAS peptides are naturally processed and presented in tumors by the major histocompatibility complex (MHC).


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
Cancer Discov ; 13(2): 298-311, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472553

RESUMEN

Mutations in the KRAS oncogene are found in more than 90% of patients with pancreatic ductal adenocarcinoma (PDAC), with Gly-to-Asp mutations (KRASG12D) being the most common. Here, we tested the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in implantable and autochthonous PDAC models with an intact immune system. In vitro studies validated the specificity and potency of MRTX1133. In vivo, MRTX1133 prompted deep tumor regressions in all models tested, including complete or near-complete remissions after 14 days. Concomitant with tumor cell apoptosis and proliferative arrest, drug treatment led to marked shifts in the tumor microenvironment (TME), including changes in fibroblasts, matrix, and macrophages. T cells were necessary for MRTX1133's full antitumor effect, and T-cell depletion accelerated tumor regrowth after therapy. These results validate the specificity, potency, and efficacy of MRTX1133 in immunocompetent KRASG12D-mutant PDAC models, providing a rationale for clinical testing and a platform for further investigation of combination therapies. SIGNIFICANCE: Pharmacologic inhibition of KRASG12D in pancreatic cancer models with an intact immune system stimulates specific, potent, and durable tumor regressions. In the absence of overt toxicity, these results suggest that this and similar inhibitors should be tested as potential, high-impact novel therapies for patients with PDAC. See related commentary by Redding and Grabocka, p. 260. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Mutación , Línea Celular Tumoral , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA